
NWLib 1.5
by Devont Software Inc.
18026 Deep Brook
Spring TX 77379
JimTyson@IX.NETCOM.COM
70421,1506 (Compuserve)
(713) 370-4215 (Fax)
(713) 370-0841 (24 Hour BBS)
www.wworks.com/~devont    (web page)

Table of Contents
New to this Release!

Introduction
Ordering Information

Function Categories
Constants
Structures
Source Code

Index
Glossary

NWLib is a trademark of Devont Software Inc.    Copyright 1995 by Devont Software Inc.    All rights 
reserved worldwide.



New Functions
The following functions have been added to this relase:

NWLib
getMapInfo - collect information about a drive mapping.
getPathInfo - parse a path specification into distinct elements.

NWServer

createSemaphore - create/access a semaphore on the server.
freeSemaphore - release a server semaphore.
incSemaValue - increment a server semaphore value.
decSemaValue - decrement a server semaphore value.
querySemaphore - check a semaphore's station count/value.
serverLoginOK - check server login status.

NWPrint
getQueueJobList - create a formatted queue job listing.
getQueueJobNumbers - get a listing of queue job numbers.
getQueueJobInfo - get information about a specific queue job.
setQueueJobInfo - change queue job information.
setQueueJobPosition - move a queue job.
deleteQueueJob - delete a queue job.



Introduction
Welcome to NWLib - the first native Netware-aware VCL component for Borland's great new Delphi 
programming environment.

NWLib is a component which conveniently "wraps up" extremely complex Novell API calls and 
integrates them directly into the Delphi environment.      The removal of the Netware layer allows the 
programmer to concentrate on more important levels of application design:    the flow of data and the 
interface to the end user.

While NWLib publishes about 100 Netware specific functions, it actually contains over 300 Netware 
API calls, and dozens of internal structures.    By digesting and combining the API calls and 
structures into more comprehensible pieces, NWLib makes it much easier to integrate full Netware 
functionality into your applications.      

Sure, NWLib contains plenty of Novell Netware Bindery/NDS and connection information routines to 
make your network applications kick butt and take names. But even more, NWLib is the most 
compatible choice you can make in creating Netware functionality for your Delphi applications.    
Since NWLib makes calls directly to the client API kit installed on the client workstations and supplied
by directly from Novell, you are assured maximum functionality and compatibility across all Netware 
platforms.    Top that off with the fact that NWLib is pure optimized Delphi code, and you've got 
yourself a potent combination for speed, compatibility, ease of use and hard-to-beat functionality .    

By simply dropping an icon or two onto a form, you instantly have access to familiar Netware 
commands such as WhoAmI, Map, Login, GetMemberList, SendLineMessage, GetDirRights, SList, 
Salvage, etc. You get four separate component units in which to include in your applications:    File 
Server, Print Environment, Connection/Bindery/NDS and a general-purpose string manipulation 
toolkit.    NWLib lets you concentrate what's really important : your data and the flow of your 
application.    
So, what'll all this great convenience cost you?    Amazingly, about a buck for each Netware function, 
and we throw in the general purpose toolkit free!    Just think of how much time you'll save since you'll
never have to crack the half-a-foot-thick Netware API manual set or try to decipher just what those 
guys up there in Utah burned into that goofy dynaText CD.    NWLib sets you back about 80 bucks, 
and you can create as many applications as you want with it.    One programmer, one license.

Believe me, the Novell API spec is no cake walk - it's something you definitely want to avoid if you 
can. It's awesomely rich, complex, and above all else, huge.    I can't tell you how many late nights 
I've spent scratching my head only to find out a problem turned out to be "documentation omissions" 
or some other irritating item.      When you think about it, you'd be crazy NOT to let someone else who
specializes in Netware, and has a lot of time with the Novell API relieve you of this burden.    For 
about the cost of an hour or two of your time, you get peace of mind and all your applications get a 
rich new set of tools.

What about updates? One of the good things about dealing with a small shop is that we don't mess 
around when it comes to fixes, updates and suggestions.    You'll find a newer, registered version on 
our 24 hour BBS and/or WWW page that you can download free for 90 days or more.    We only 
charge for an upgrade when a significant version changes with new features and capabilities that 
warrant a cost, and at such a price that you're willing and pleased to pay.    You'll never be charged 
for bug fixes or patches that are certain to occur in any complex software product.      

How about source code?    NWLib's source code is purchasable seperately at a very modest cost.      
You must already own a copy of the compiled version of NWLib to purchase source code, of course.

So what if you use NWLib and don't send any money?    The bad thing about that is that if you don't 
send in any money, you'll be using a version that displays an annoying little banner each time an 
instance of the library is created...but least your apps run without Delphi running....after all, you're 



writing network software that needs to be tested on multiple workstations, and Delphi is probably not 
installed on each of your network workstations.    Your customers will see this banner if you distribute 
apps with NWLib demo code, and they'll think you're a cheapskate.    No one wants to see that 
happen.      You can't blame us for wanting to be paid for the enormous amount of time spent creating 
this software, you'd probably do the same if you wrote it yourself.

Above all else, enjoy yourself and have fun.    If you're not having fun programming with Delphi, 
you're doing something wrong!

Jim Tyson - President
Devont Software Inc.
JimTyson@ix.netcom.com
24 Hour Fax:    713/370-4215
24 Hour BBS System:    713/370-0841 
World Wide Web:    www.wworks.com/~devont



Ordering NWLib
Please remember:    one programmer, one license.    If you've got a shop where many people can 
compile and code that contains our library code, you need to obtain a license for each possible 
instance.    Additional copies of NWLib are only $25.00, so make sure to purchase an valid license for
each programmer developing software that uses NWLib functions

If you do not provide a valid email address, we ship regular ground mail.    Postage and handling 
charges are added to orders shipped ground mail.

United States:05.00
Canada Mexico: 07.50
Europe: 10.00 
Australia/NZ: 10.00
Asia: 12.00 
Africa: 12.00

Our goal is to get the software in your hands as quickly as possible.    If you send your order via 
electronic mail and your order does not arrive in your mailbox within two US working days, please 
contact us immediately.    Sometimes our reply messages and attachments do not arrive to the 
correct address for a variety of Internet-related reasons.    If we somehow recieved your message 
with an invalid address, we may not be able to reply back to you to tell you we failed in sending your 
files.        If you don't hear back from us, something has happened to our messages.    

If your Internet message fails to reach us, please try our Compuserve address over the internet:    
70421,1506@compuserve.com        Your messages are very valuable to us, and we think each 
deserves a speedy reply.

Payment Methods
1.    American Express:    Fax our order form to us directly:    (713)370-4215.    Please leave your 
complete American Express card and return email or shipping information. In most cases, you'll have
your order waiting for you the next morning in your email box.    You are charged $75.00 if we send 
via email.

2.    CompuServe:    go SWREG and use registration number 7641.    Total in US dollars is $85.00.    If 
you wish to order additional copies, you should contact us directly.    In most cases, your order is 
waiting in your mailbox the next morning.

3.    Personal/Company Checks:
Devont Software Inc.
18026 Deep Brook
Spring TX 77379
 $75.00+shipping    - US Currency on US Banks only.

4.    Email:    JimTyson@ix.netcom.com or 70421.1506@compuserve.com

Sorry, we do not accept MC/Visa.    If you require alternative playment options, please contact us 
directly.





Functions by Category

TNWLib    -    Network Connection and Environment functions

TNWProp - Complete Object and Property management functions.

TNWServer - Server statistical, query and operating functions

TNWPrint - CAPTURE and related functionality

TNWNDS - Novell Directory Services name and context management

TNWTools - General Purpose utilities



Constants



const
  { Object Types }
  nw_user          = $0100 ;
  nw_group         = $0200 ;
  nw_printq        = $0300 ;
  nw_server        = $0400 ;
  nw_jobServer     = $0500 ;
  nw_gateway       = $0600 ;
  nw_printServer   = $0700 ;
  nw_archiveQueue  = $0800 ;
  nw_archiveServer = $0900 ;
  nw_jobQueue      = $0A00 ;
  nw_Administration= $0B00 ;
  nw_nasSNAServer  = $2100 ;
  nw_RemoteBridge  = $2600 ;
  nw_TCPIPGateway  = $2700 ;

  { Broadcast Modes }
  nw_caston        = 0   ;
  nw_castoff       = $01 ;
  nw_castserver    = $03 ;

  { Returned Path Formats }
  nw_format_netware       = 0 ;
  nw_format_server_volume = $01 ;
  nw_format_drive         = $02 ;
  nw_format_unc           = $03 ;

  { Internal Definitions }
  word_local              = 'Local'  ;

  { Bindery Types }
  type_set                = $02 ;
  type_item               = 0   ;

  { netware file open modes }
  nw_file_normal          = 0   ;
  nw_file_readOnly        = $01 ;
  nw_file_hidden          = $02 ;
  nw_file_system          = $04 ;
  nw_file_execute_only    = $08 ;
  nw_file_directory       = $10 ;
  nw_file_needsArchived   = $20 ;
  nw_file_shareable       = $80 ;

  { nds context keys }
  nds_key_flags           = $01 ;
  nds_key_confidence      = $02 ;
  nds_key_contextname     = $03 ;
  nds_key_transportType   = $04 ;
  nds_key_referralScope   = $05 ;

  nds_read                = 3  ;
  nds_compare             = 4  ;
  nds_search              = 6  ;
  nds_add_entry           = 7  ;



  nds_modify_entry        = 9  ;
  nds_read_attr_def       = 12 ;
  nds_define_class        = 14 ;
  nds_read_class_def      = 15 ;
  nds_modify_class_def    = 16 ;
  nds_search_filter       = 28 ;

  nds_add_attribute       = $00 ;
  nds_remove_attribute    = $01 ;
  nds_add_value           = $02 ;
  nds_remove_value        = $03 ;

  nds_entry_browse        = $0001 ;
  nds_entry_add           = $0002 ;
  nds_entry_delete        = $0004 ;
  nds_entry_rename        = $0008 ;
  nds_entry_supervisor    = $0010 ;

  nds_attr_compare        = $0001 ;
  nds_attr_read           = $0002 ;
  nds_attr_write          = $0004 ;
  nds_attr_self           = $0008 ;
  nds_attr_supervisor     = $0020 ;

  nds_sms_scan            = $0001 ;
  nds_sms_backup          = $0002 ;
  nds_sms_restore         = $0004 ;
  nds_sms_rename          = $0008 ;
  nds_sms_delete          = $0010 ;
  nds_sms_admin           = $0020 ;

  max_rdn_chars           = 127 ;
  max_dn_chars            = 254 ;
  max_schema_name_chars   = 31  ;
  max_rdn_bytes           = (2*(max_rdn_chars+1)) ;
  max_dn_bytes            = (2*(max_dn_chars+1)) ;
  max_schema_name_bytes   = (2*(max_schema_name_chars+1)) ;
  max_asn1_name           = 31;
  max_value               = (63 * 1024) ;
  max_message             = $10000 ;
  no_more_iterations      = -1 ; {0xffffffffl}

  ftok_end                = 0  ;
  ftok_or                 = 1  ;
  ftok_and                = 2  ;
  ftok_not                = 3  ;
  ftok_lparen             = 4  ;
  ftok_rparen             = 5  ;
  ftok_aval               = 6  ;
  ftok_eq                 = 7  ;
  ftok_ge                 = 8  ;
  ftok_le                 = 9  ;
  ftok_approx             = 10 ;
  ftok_aname              = 14 ;
  ftok_present            = 15 ;
  ftok_rdn                = 16 ;



  ftok_basecls            = 17 ;

  DSV_UNUSED_0         = 0  ;
  DSV_RESOLVE_NAME         = 1  ;
  DSV_READ_ENTRY_INFO         = 2  ;
  DSV_READ         = 3  ;
  DSV_COMPARE         = 4  ;
  DSV_LIST         = 5  ;
  DSV_SEARCH         = 6  ;
  DSV_ADD_ENTRY         = 7  ;
  DSV_REMOVE_ENTRY         = 8  ;
  DSV_MODIFY_ENTRY         = 9  ;
  DSV_MODIFY_RDN         = 10 ;
  DSV_DEFINE_ATTR         = 11 ;
  DSV_READ_ATTR_DEF         = 12 ;
  DSV_REMOVE_ATTR_DEF         = 13 ;
  DSV_DEFINE_CLASS         = 14 ;
  DSV_READ_CLASS_DEF         = 15 ;
  DSV_MODIFY_CLASS_DEF         = 16 ;
  DSV_REMOVE_CLASS_DEF         = 17 ;
  DSV_LIST_CONTAINABLE_CLASSES = 18 ;
  DSV_GET_EFFECTIVE_RIGHTS = 19 ;
  DSV_ADD_PARTITION         = 20 ;
  DSV_REMOVE_PARTITION         = 21 ;
  DSV_LIST_PARTITIONS         = 22 ;
  DSV_SPLIT_PARTITION         = 23 ;
  DSV_JOIN_PARTITIONS         = 24 ;
  DSV_ADD_REPLICA         = 25 ;
  DSV_REMOVE_REPLICA         = 26 ;
  DSV_OPEN_STREAM         = 27 ;
  DSV_SEARCH_FILTER         = 28 ;
  DSV_CREATE_SUBORDINATE_REF = 29 ;
  DSV_LINK_REPLICA         = 30 ;
  DSV_CHANGE_REPLICA_TYPE = 31 ;
  DSV_START_UPDATE_SCHEMA = 32 ;
  DSV_END_UPDATE_SCHEMA = 33 ;
  DSV_UPDATE_SCHEMA = 34 ;
  DSV_START_UPDATE_REPLICA = 35 ;
  DSV_END_UPDATE_REPLICA = 36 ;
  DSV_UPDATE_REPLICA = 37 ;
  DSV_SYNC_PARTITION = 38 ;
  DSV_SYNC_SCHEMA = 39 ;
  DSV_READ_SYNTAXES = 40 ;
  DSV_GET_REPLICA_ROOT_ID = 41 ;
  DSV_BEGIN_MOVE_ENTRY = 42 ;
  DSV_FINISH_MOVE_ENTRY = 43 ;
  DSV_RELEASE_MOVED_ENTRY = 44 ;
  DSV_BACKUP_ENTRY = 45 ;
  DSV_RESTORE_ENTRY = 46 ;
  DSV_SAVE_DIB = 47 ;
  DSV_UNUSED_2 = 48 ;
  DSV_UNUSED_3 = 49 ;
  DSV_CLOSE_ITERATION = 50 ;
  DSV_UNUSED_4 = 51 ;
  DSV_AUDIT_SKULKING = 52 ;
  DSV_GET_SERVER_ADDRESS = 53 ;
  DSV_SET_KEYS = 54 ;



  DSV_CHANGE_PASSWORD = 55 ;
  DSV_VERIFY_PASSWORD = 56 ;
  DSV_BEGIN_LOGIN = 57 ;
  DSV_FINISH_LOGIN = 58 ;
  DSV_BEGIN_AUTHENTICATION = 59 ;
  DSV_FINISH_AUTHENTICATION = 60 ;
  DSV_LOGOUT = 61 ;
  DSV_REPAIR_RING = 62 ;
  DSV_REPAIR_TIMESTAMPS = 63 ;
  DSV_CREATE_BACKLINK = 64 ;
  DSV_DELETE_EXTERNAL_REFERENCE = 65 ;
  DSV_RENAME_EXTERNAL_REFERENCE = 66 ;
  DSV_CREATE_ENTRY_DIR = 67 ;
  DSV_REMOVE_ENTRY_DIR = 68 ;
  DSV_DESIGNATE_NEW_MASTER = 69 ;
  DSV_CHANGE_TREE_NAME = 70 ;
  DSV_PARTITION_ENTRY_COUNT = 71 ;
  DSV_CHECK_LOGIN_RESTRICTIONS = 72 ;
  DSV_START_JOIN = 73 ;
  DSV_LOW_LEVEL_SPLIT = 74 ;
  DSV_LOW_LEVER_JOIN = 75 ;
  DSV_ABORT_LOW_LEVEL_JOIN = 76 ;
  DSV_GET_ALL_SERVERS = 77 ;

  { Bindery Write Access Levels }
  BS_ANY_WRITE    = 0 ;
  BS_LOGGED_WRITE = $10 ;
  BS_OBJECT_WRITE = $20 ;
  BS_SUPER_WRITE  = $30 ;
  BS_BINDERY_WRITE= $40 ;

  { Bindery Read Access Levels }
  BS_ANY_READ     = 0 ;
  BS_LOGGED_READ  = $01 ;
  BS_OBJECT_READ  = $02 ;
  BS_SUPER_READ   = $03 ;
  BS_BINDERY_READ = $04 ;

  { Bindery Obj/Prop Flags }
  BF_STATIC       = 0   ;
  BF_DYNAMIC      = $01 ;
  BF_ITEM         = 0   ;
  BF_SET          = $02 ;

  { Trustee Rights Masks }
  TA_NONE         = $00  ;
  TA_READ         = $01  ;
  TA_WRITE        = $02  ;
  TA_OPEN         = $04  ;
  TA_CREATE       = $08  ;
  TA_DELETE       = $10  ;
  TA_OWNERSHIP    = $20  ;
  TA_SEARCH       = $40  ;
  TA_MODIFY       = $80  ;
  TA_ALL          = $A0  ;



  { Directory Inherited Rights Masks }
  TR_NONE         = $0000 ;
  TR_READ         = $0001 ;
  TR_WRITE        = $0002 ;
  TR_OPEN         = $0004 ;
  TR_CREATE       = $0008 ;
  TR_DELETE       = $0010 ;
  TR_OWNER        = $0010 ;
  TR_ACCESSCTRL   = $0020 ;
  TR_FILESCAN     = $0040 ;
  TR_MODIFY       = $0080 ;
  TR_ALL          = $01FB ;
  TR_SUPERVISOR   = $0100 ;
  TR_NORMAL       = $00FB ;

  {error mode constants (1.4+) }
  NWERR_none               = $0000 ;
  NWERR_addToStringList    = $0001 ;
  NWERR_noMoreSearchDrives = $0002 ;
  NWERR_newSearchDrive     = $0003 ;
  {...}
  NWERR_unknown            = $FFFF ;



Structures

TNWLib

TNWConnectInfo  :  NWLIB

General connection information interface structure.  Passed by reference 
in function GetConnectInfo.

  type
    TNWConnectInfo = record
      serverConnID  : TNWConnHandle ;
      loginDateTime : TDateTime     ;
      internet      : string        ;
      sessionID     : word          ;
      ConnectID     : TNWConnNumber ;
      userID        : string        ;
      serverName    : string        ;
  end;

TNWPathInfo  : NWLib

Holds all directory path information, as returned by parseNetwarePath.
 
 type
      TNWPathInfo = record
        nServer      : TNWConnHandle ;
        cServer      : string ;
        volumeID     : TNWVolNum ;
        volumeName   : string ;
        dirHandle    : TNWDirHandle ;
        pathOnly     : string ;
        relativePath : string ;
  end;



TNWDirRights :  NWLib

Holds all effective rights for a directory (and files too for Netware 3.x 
and higher platforms).  

    type
      TNWDirRights = record
        read          : boolean ;
        open          : boolean ; { Netware 2.x only }
        write         : boolean ;
        create        : boolean ;
        erase         : boolean ;
        modify        : boolean ;
        filescan      : boolean ; { Netware 3.x + only }
        accessControl : boolean ;
    end;

TNWParsedPath  :  NWLib

   type
     pTNWParsedPath = ^TNWParsedPath ;
     TNWParsedPath = record
       nServer      : TNWConnHandle ;
       serverName   : string[40]  ;
       volName      : string[128] ;
       dirPath      : string[128] ;
   end;

TNWMapInfo    :   NWLib

used by getMapInfo to obtain details about a drive mapping in effect on 
the workstation.

   type
    TNWMapInfo = record
       nServer     : TNWConnHandle ;
       serverName  : string[40]  ;
       fullPath    : string[128] ;
       driveStatus : word  ;
   end;    

TNWPrint



TNWQueueJobInfo           : TNWPrint

Holds information about print queue jobs.  Used in getQueueJobInfo.

    type
      TNWQueueJobInfo = record
        nServer         : TNWConnHandle ;
        cQueue          : string        ;
        jobID           : TNWQueueJobID ;
        ownerName       : string        ;
        serverName      : string        ;
        queueServerName : string        ;
        jobFileName     : string        ;
        jobDescription  : string        ;
        workstationID   : longint       ;
        entryDateTime   : TDateTime     ;
        execDateTime    : TDateTime     ;
        jobPosition     : word          ;
        jobFlags        : TNWQueueJobCtrlFlags ;
    end;

TNWQueueJobCtrlFlags    : TNWPrint

embedded in TNWQueueJobInfo.  Allows you to change certain print queue job
status flags, such as Hold.

    type TNWQueueJobCtrlFlags = record
      auto_start      : boolean ;
      entry_restart   : boolean ;
      entry_open      : boolean ;
      user_hold       : boolean ;
      operator_hold   : boolean ;
    end;

TNWServer



TNWFileInfo   :  NWServer

General File System structure.  When displaying information about a 
Netware-based file with GetFileInfo, you'll pass along this strucure by 
reference so Netware can fill it up for you.

    type
      TNWFileInfo = record
        name              : string        ;
        updatedBy         : string        ;
        ownerID           : string        ;
        lastArchivedBy    : string        ;
        creationdate      : TDateTime     ;
        lastArchiveDate   : TDateTime     ;
        lastAccessDate    : TDateTime     ;
        lastModified      : TDateTime     ;
        updateDateTime    : TDateTime     ;
        fileSize          : longint       ;
        inheritedRights   : TNWRightsMask ;  
        maximumSpace      : TNWDirSpace   ;
        attributes        : TNWAttributes ;
        flags             : TNWFlags      ;
        nameSpace         : TNWNameSpace  ;
        nameLength        : TNWNameLen    ;
    end;

TNWConnStats   :  NWServer

GetUserStats uses this structure to obtain connection-status information 
about any particular user on the network.

    type
      TNWConnStats = record
        loginTime      : TDateTime     ;
        bytesRead      : TNWNumBytes   ;
        bytesWritten   : TNWNumBytes   ;
        totalRequests  : TNWNumPackets ;
        recordLocks    : TNWNumPackets ;
        fileLocks      : TNWNumPackets ;
        expirationTime : TDateTime   ;
    end;



TNWServerInfo  : TNWServer

GetServerStats uses this structure to provide detailed information about 
the file server and it's operating environment.

Note that some of the values are valid in a Netware 4.x environment only. 
The Novell Client SDK does not include functions to obtain this 
information on any other platform.

    type
      TNWServerInfo = record
        serverName        : string ;
        serverUpTime      : TNWSysTime  ;    {4.x only}
        processor         : byte ;
        numprocs          : byte ;
        utilization       : byte ;           {4.x only}
        PacketsIn         : TNWNumPackets ;  {4.x only}
        packetsOut        : TNWNumPackets ;  {4.x only}
        version           : string ;
        maxConns          : TNWNumber ;
        ConnsInUse        : TNWNumber ;
        maxConnsUsed      : TNWNumber ;
        numVolumes        : TNWNumber ;
        sftLevel          : TNWSupportLevel ;
        ttsLevel          : TNWSupportLevel ;
    end;

TNWVolInfo   : TNWServer 

VolInfo fills this stucture with information regarding a particular server
volume.  The Novell Client SDK provides this functionality only on a 
Netware 2.2 platform only.

    type
      TNWVolumeInfo = record
        sysUpTime         : TNWSysTime  ;
        volumeNumber      : TNWVolNum   ;
        logicalDriveNum   : TNWDriveNum ;
        sectorsPerBlock   : TNWNumber   ;
        startingBlock     : TNWNumber   ;
        totalBlocks       : TNWNumber   ;
        availableBlocks   : TNWNumber   ;
        totalDirSlots     : TNWNumber   ;
        availableDirSlots : TNWNumber   ;
        maxDirSlotsUsed   : TNWNumber   ;
        isHashing         : TNWFlags    ;
        isCaching         : TNWFlags    ;
        isRemovable       : TNWFlags    ;
        isMounted         : TNWFlags    ;
        volName           : TNWVolName  ;
    end;



TNWDiskCacheInfo   :   TNWServer

Use GetCacheInfo along with this structure to obtain detailed information 
about your server's disk caching environemtn.   The Novell Client SDK 
provides this functionality only on Netware 2.2 platforms.

    type
      TNWDiskCacheInfo = record
        serverUpTime              : TNWSysTime ;
        cacheBufferCount          : TNWNumber ;
        cacheBufferSize           : TNWNumber ;
        dirtyCacheBuffers         : TNWNumber ;
        cacheReadRequests         : TNWNum ;
        cacheWriteRequests        : TNWNum ;
        cacheHits                 : TNWNum ;
        cacheMisses               : TNWNum ;
        diskReadRequests          : TNWNum ;
        diskWriteRequests         : TNWNum ;
        diskReadErrors            : TNWNumber ;
        diskWriteErrors           : TNWNumber ;
        cacheGetRequests          : TNWNum    ;
        cacheFullWriteRequests    : TNWNum    ;
        cachePartialWriteRequests : TNWNum    ;
        backgroundDirtyWrites     : TNWNum    ;
        backgroundAgedWrites      : TNWNum    ;
        totalCacheWrites          : TNWNum    ;
        cacheAllocations          : TNWNum    ;
        thrashingCount            : TNWNumber ;
        LRUDirtyBlockCount        : TNWNumber ;
        readBeyondWriteCount      : TNWNumber ;
        fragmentedWriteCount      : TNWNumber ;
        cacheHitOnUnavailableCount: TNWNumber ;
        cacheBlockScrappedCount   : TNWNumber ;
    end;



TNWFileSysInfo    :   TNWServer

GetFileSysStats uses this structure to return information about the 
server's file i/o activity.  The Novell Client SDK provides this 
functionality only on Netware 2.2 platforms.

    type
      TNWFileSysInfo = record
        serverUpTime              : TNWSysTime ;
        maxOpenFiles              : TNWNumber  ;
        maxFilesOpened            : TNWNumber  ;
        currOpenFiles             : TNWNumber  ;
        totalFilesOpened          : TNWNum     ;
        totalReadRequests         : TNWNum     ;
        totalWriteRequests        : TNWNum     ;
        currChangedFatSectors     : TNWNumber  ;
        totalChangedFatSectors    : TNWNum     ;
        fatWriteErrors            : TNWNumber  ;
        fatalFatWriteErrors       : TNWNumber  ;
        fatScanErrors             : TNWNumber  ;
        maxIndexFilesOpen         : TNWNumber  ;
        currOpenIndexedFiles      : TNWNumber  ;
        attachedIndexFiles        : TNWNumber  ;
        availableIndexFiles       : TNWNumber  ;
    end;

TNWMemCacheInfo      :   TNWServer

GetCacheInfo fills this structure with information regarding a file 
server's caching activities in a Netware 4.x environment.  GetCacheInfo 
has no effect on any other Netware release.

    type TNWMemCacheInfo = record
       serverUpTime               : TNWSysTime ;
       writeBlockCount            : longint ;
       diskWriteCount             : longint ;
       writeErrorCount            : longint ;
       numCacheHits               : longint ;
       numDirtyCacheHits          : longint ;
       cacheDirtyWaitTime         : longint ;
       cacheMaxConcurrentWrites   : longint ;
       maxDirtyTime               : longint ;
       DirCacheBuffers            : longint ;
       maxByteCount               : longint ;
       minCacheBuffers            : longint ;
    end;



TNWDeletedFileInfo     :   TNWServer

GetFileInfo uses this structure to obtain information on files stored on 
Netware volumes.

    type
      TNWDeletedFileInfo = record
        attributes       : TNWAttributes ;
        flags            : TNWFlags      ;
        nameSpace        : TNWNameSpace  ;
        nameLength       : TNWNameLen    ;
        name             : string        ;
        creationdate     : TDateTime     ;
        ownerID          : string        ;
        lastArchiveDate  : TDateTime     ;
        lastArchivedBy   : string        ;
        updateDateTime   : TDateTime     ;
        updatedBy        : string        ;
        fileSize         : longint       ;
        inheritedRights  : TNWRightsMask ;
        lastAccessDate   : TDateTime     ;
        deletedDateTime  : TDateTime     ;
        deletedBy        : string        ;
    end;

TNWProp

TNWRights:    General File and Directory Rights Structure    :    TNWProp

type
    TNWRights    =    record

supervisor : boolean ;
read : boolean ;
open : boolean ; {Netware 2.x Only}
write : boolean ;
create : boolean ;
erase : boolean ;
modify : boolean ;
filescan : boolean ; { Search in Netware 2.x}

end;

TNWNDS

TNWDSAttrRights                        :      TNWNDS

type
    TNWDSAttrRights = record

compare : boolean ;
read : boolean ;
write : boolean ;
self : boolean ;



supervisor : boolean ;
end;

type
    TNWDSEntryRights = record

browse : boolean ;
add : boolean ;
delete : boolean ;
rename : boolean ;
supervisor: boolean ;

end;

type
    TNWDSSMSRights = record 

scan : boolean ;
backup : boolean ;
restore : boolean ;
rename : boolean ;
delete : boolean ;
admin : boolean ;

end;



Source Code

NWLib source code is availalble to any registered NWLib Library user.    You can purchase the full set
of the NWLib code, including all Pascal routines and Netware API encapsulation routines and 
structures for only $100.00.    This license enables one concurrent programmer to view/modifiy the 
source code or use the NWLib source code text files in a project.    This license does not impose on 
the licensing rights of the current NWLib library license already in effect at the site.

Additional NWLib Source Code licenses are only $40.00.    You must order additional source code 
licenses directly from us.

You can purchase NWLib source code via Compuserve's SWREG Service Number 9731.    Or, send 
us your American Express card information to our fax number at (713)370-4215, or internet your 
information to JimTyson@IX.NETCOM.COM.

We also accept signed, numbered and faxed company purchase orders from our registered United 
States and Canadian users, or those with major headquarters located in the US.    We'll send an 
invoice due in 15 days.



Index
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A
addObjectToSet
addUserToGroup

C
Capture
changeNWPassword
changeObjectSecurity
changePropertySecurity
Constants
createObject
createProperty
createSemaphore

D
decSemaValue
deleteObject



deleteObjectFromSet
deleteProperty
deleteQueueJob
deleteTrusteeRight
deleteUserFromGroup
disableLogins
downServer

E
enableLogins
endCap

F
freeSemaphore
fullName

G
getBannerUserName
getBindeyList
getBroadcastMode
getCacheInfo
getCaptureFlags
getConnectedServerList
getConnectID
getConnectInfo
getDeletedFileInfo
getDeletedFiles
getDiskCacheStats
getEffectiveRights
getFileInfo
getFileSysStats
getFirstNetDrive
getMapInfo
getMaxPrinters
getMemberList
getMyGroups
getNextNetDrive
getObjectDirRights
getObjectInfo
getObjectNumber
getObjID
getObjName
getObjType
getPathInfo
getPrimaryServerID



getPropertyList
getQueueJobInfo
getQueueJobList
getQueueJobNumbers
getQueueOperators
getQueueServers
getQueueUsers
getServerDate
getServerHandle
getServerHandleFromPath
getServerName
getServerSerial
getServerStats
getServerTime
getTrusteeList
getUserConnList
getUserStats
getVolFileList
getVolumes
Glossary

I
incSemaValue
Index
intro
isCaptured
isConsoleOperator
isInList
isLoggedIn
isMember
isNWManager

L
libraries
longSwap

M
main
Map
mapDelete
mapShow
maxConns
modifyTrusteeRights

N
nCopy



ndsAbbreviateName
ndsClose
ndsCopyContext
ndsExpandName
ndsFreeContext
ndsGetAttrRights
ndsGetBinderyContextName
ndsGetContextHandle
ndsGetContextName
ndsGetEntryRights
ndsGetObjID
ndsGetRootName
ndsGetServerDN
ndsGetSMSRights
NDSInit
ndsLogin
ndsLogout
ndsPassCheck
ndsSetContextName
ndsWhoAmI
New Function
NWDateTimeToTDateTime
nwInit
NWLogin
NWLogOut
nwPassCheck

O
ordering

P
parseNetwarePath
purgeAllFiles

Q
querySemaphore

R
renameObject

S
salvage
SecureEquiv
sendLineMessage
serverLoginOK
setBannerUserName
setCaptureFlags



setCastMode
setLoginControl
SetPreferredServer
setQueueJobInfo
setQueueJobPosition
setServerDateTime
sList
Source Code
structures

T
TNWCaptureFlags
TNWLib
TNWNDS
TNWPrint
TNWProp
TNWRights
TNWServer
TNWTools
TNWTools

V
volinfo

W
whoAmI
writeItemProperty



Glossary
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B
Bindery Object Types



addObjectToSet : Boolean
Netware Objects can contain properties that are of the BF_SET type.    This property type can contain
many entries, unlike the BF_ITEM property type, which can contain only a single entry.

Use this function to add a new entry into an object's    property which is defined as a BF_SET type.

Parameters
nServer:    TNWConnHandle        The server connection handle that owns the object to modify.    Pass 
a 0 (zero) as the server handle and NWLib automatically uses the 'primary' server connection 
handle.

objName : String.          The name of the object that contains the BF_SET property to modify.    

propName:    String.      The name of the BF_SET property in which to modify.    This property must 
already exist for the objName.

memberName:    String.    The new entry to add into the set-type property.    The property is added to 
the end of the list.    

Returns
Boolean.    True if the member is added to the set-type property.    False usually means the 
server/objName combination is not correct, or the property name does exist for the specified user.

Example
if addObjectToSet( 0,

'BARNEY',
'KEYS',
'F-0930938384') then

    okBox('Keys Checked Out to Barney Successfully') ;

See Also
isMember, addUserToGroup, modifyTrusteeRights, getPropertyList



addUserToGroup : boolean
You can use this function if you need to add a new user into an existing Netware group on a server.    
A user must posess a Bindery Write Access Level of BS_SUPER_WRITE to the group AND user 
objects in order to add the user to the group.

When a user is added to a group, two item property sets are actually modified:    The user's login 
name is added to the group's 'GROUP_MEMBERS' property, and the group name is added to the 
user's 'GROUPS_I''M_IN' property.

You could actually perform these exact same steps with NWLib's own AddObjectToSet function call, 
but it's much easier to make a single function call which takes care of this in one simple step.

Parameters
nServer:    TNWConnHandle        The server connection handle that owns the user and group objects 
in which to modify.    Pass a 0 (zero) as the server handle and NWLib automatically uses the 'primary'
server connection handle.

groupName : String      The name of the group in which a new member is to be added.

userName:    String        The name of the user which is to be added to the specified group.

Returns
Boolean.    True if the both user and group properties are modified and the user is added to the 
group.

Example
if addUserToGroup( 0,

'EVERYONE',
'BILLY') then

        okBox('Message from Server:    ' + getServerName(0) + 
';Billy Added to the group Everyone!') ;

See Also
deleteUserFromGroup
deleteObjectFromSet
createObject



Capture : boolean
In a Netware environment, as you probably already know, you use the CAPTURE utility to redirect 
printing to shared network devices.    NWLib's Capture function performs the same function as the 
Netware command-line utility, except you can call this function internally within your own 
applications.

There are a few differences in how to call the API function vs. the command-line utility that Netware 
provides:    whereas the Netware CAPTURE utility requires that you place the capture settings on the
command line, such as "/nb /nff" etc., NWLib requires that you first create the capture environment, 
then apply the properties to the environment.    

In the example below, the following events occur to create a valid capture environment:

1.    A TNWCaptureFlagss record structure and integer type variable are declared.
2.    The CaptureFlags record structure is filled with current Capture environment settings if they exist.
Otherwise, it is filled with default capture data.
3.    Changes are made to the CaptureFlags environment.
4.    The Capture statement is executed.
5.    The CaptureFlags environment was applied to the capture environment.
6.    End of function.

Parameters
nServer : TNWConnHandle.    The server in which you want to handle print jobs.

cQueueName : String.    The name of the Netware Print Queue you want to redirect.

nPort : TNWLpt.    The port number.    IPX/NETX networks can handle LPT1 to LPT3.    A VLM 
Environment can handle up to LPT9.

Returns
Boolean.    True if the capture was successful.

Example
var
    captureFlags : TNWCaptureFlags ;
    nLPT : TNWLpt ;
    oldqueue : string ;
begin
        nLPT := 1 ;      
        if getCaptureFlags(nLPT,captureFlags) then
              begin
                  captureFlags.formfeeds := False ;      { /nff }
                  captureFlags.banner    := '' ;                          { /nb }
                  captureFlags.tabSize := 0 ;                        { /nt    }
                  oldqueue := captureFlags.qname ;      { i.e. Save old Capture, if you need }
                  Capture('fs1','printer1',nLPT) ) then
                      begin
                                setCaptureFlags(GetPrimaryServerID,nLPT,captureFlags) ;
                                okBox('Print Redirected to FS1/Printer1') ;
                      end;



              end;
end ;

Hint
Note there are two read-only elements in the TNWCaptureFlags record structure. If a Capture 
environment is already in place and you fill the TNWCaptureFlags structure using NWLib's 
getCaptureFlags function, you can read two additional items: the name of the print queue currently in
use, and the server name to which it belongs, in addition to all the other print attributes currently in 
use.

You can use these elements to restore print environments to their original state once you have 
completed whatever task you need in your programs.    Simply go back to the record structure, read 
the elements, then perform another Capture/setCaptureFlags call, and viola, back we go.      The old 
queue name and server are stored until you call another getCaptureFlags function call using the 
same TNWCaptureFlags record structure.

See Also
endCap, setCaptureFlags, getCaptureFlags, isCaptured, getBannerUserName, 
setBannerUserName, getMaxPrinters



changeNWPassword : boolean
Use this function to change a user object's login password.    You must be a supervisor or equivalent 
to use this function, or you must know the user's old login password in order to change it.

No confirmation is performed, so use this function with care!

Parameters
nServer : TNWConnHandle    :    The server connection handle that owns the object who's password 
is to be changed.    Pass a 0 (zero) as the server connection handle and NWLib automatically uses 
the 'primary' server connection handle.

cUserID    :    String.    The name of the user that gets the password change.

cPassword:    String.    The new password.    Not case sensitive.    Note the password must comply 
with the user's account restrictions for size and uniqueness.

cOldPassword:    string. The user's Old password.      If you have Supervisor-level access to this 
object, you can supply an empty string as this parameter.

Returns
Boolean.    True if the operation is successful.    False usually means the user object specified is not 
valid on the specified server, or the user does not have sufficient object rights in order to call this 
function.

Example
if changeNWPassword( getPrimaryServerID,

'guest',
'bigRedSwitch',

                                                                                                            'think') then
      okbox('Password Changed!') ;

See Also
getPrimaryServerID
getServerHandle



changeObjectSecurity : boolean
Use this function to promote or demote a user's Bindery Read/Write access level.    A user with 
Supervisor Read/Write object security can change anyone's password, full name, or any other 
property data.

A common use for this function is granting a regular user higher bindery rights to modify or add other 
objects, without neccesarily granting SUPERVISOR equivilency, or promoting rights to a particular 
user so they can perform modifications on other object's properties, without granting extra access 
privileges    or equivilency that may be undesirable.

Parameters
nServer:    TNWConnHandle        The server connection handle that owns the object in which the 
Bindery Read/Write access level is to be changed.      Pass a 0 (zero) as the server handle and 
NWLib automatically uses the 'primary' server connection handle.

objName:    String        Pass the name of the user object in which the bindery access level is to be 
changed.

readSecurity:    TNWFlags      Specifies the Bindery Read Access level to grant to the object.    The 
NWLib include file contains a complete listing of available Bindery Read Security constants, such as 
BS_ANY_READ and BS_LOGGED_READ.

writeSecurity:    TNWFlags        Specifies the Bindery Write Access level to grant to the object.    The 
NWLib include file contains a complete listing of available Bindery Write Security constants, such as 
BS_ANY_WRITE and BS_SUPER_WRITE.

Returns
Boolean.    True if the object's Bindery Access Levels were changed.    False usually indicates the 
objectname does not exist on the specified server, or the user making the call does not have 
SUPERVISOR access rights on the desired server.

Example
if changeObjectSecurity( getServerHandle('FS2'),

'GUEST',
BS_LOGGED_READ,
BS_ANY_WRITE) then

    okBox('FS2/GUEST Bindery Access Levels Changed!') ;

{now guest can read data about any object on the server, and only write to other objects whose Write
access level is set as BS_ANY_WRITE, which means just about no one.}

See Also
changePropertySecurity, getObjectInfo



changePropertySecurity : boolean
Use this function when you want to promote or demote the Bindery Access Read/Write levels that an 
object must posess in order to view or change the information contained in the property.

An object's default properties also contain a standard Bindery Access Read/Write Security level, 
such as a user's 'IDENTIFICATION' property, which is of BS_LOGGED_READ and 
BS_OBJECT_WRITE level.    This means that any logged in object can read the user's full name, but 
only the object or anyone with at least BS_OBJECT_WRITE access rights to the object can edit the 
user's full Name.    A SUPERVISOR has BS_SUPER_READ and BS_SUPER_WRITE, which is the 
highest obtainable Bindery Access Levels, except for the file server itself.

Parameter
nServer:    TNWConnHandle        The server connection handle that owns the object in which new 
property read/write access levels are to be edited.    Pass a 0 (zero) as the server handle and NWLib 
automatically uses the 'primary' server connection handle.

Returns
True if the propertie's access levels are modified.    False usually indicates a bad server/userName 
combination, or insufficient object read/write access levels.

Example
if changePropertySecurity( 0,

'GUEST',
'IDENTIFICATION',
BS_LOGGED_READ,
BS_SUPER_WRITE) then

    okBox('Now only a SUPERVISOR can change GUEST's FullName!') ;

See Also
deleteProperty
createProperty
changeObjectSecurity
getPropertyList



createObject : boolean
With this function, you can create new Netware users, groups, print servers, or any other valid 
Netware object types (defined in the NWLib include file).

Standard Netware properties are automatically created for each valid object type. In other words, if 
you are creating a regular Netware user account, the standard properties such as 
'IDENTIFICATION', 'GROUPS_I'M_IN', 'LOGIN_CONTROL', and 'SECURITY_EQUALS'.    This 
emulates the functionality of SYSCON, so objects created by this function can be used in a normal 
environment with no further property modifications or additions.    The same is true for Group Objects,
Print Queue and Server Objects, etc.

However, you should note that for all new objects, default properties created are not actually 
populated with the default property information you expect when you create the object using 
standard Netware tools, such as SYSCON or NetAdmin.    Therefore, if you want a user to be 
included in the EVERYONE group, you'll simply need to make a call to the addUserToGroup function 
after the user object is successfully created.    The same is true for similar user defaults, such a 
mailbox directory { usually SYS:\MAIL\getObjID() } and sufficient access rights to it, and a home    
directory.    NWLib gives you the power to do all these things easily yourself in minutes, without 
requiring any other library or toolkit.

Parameters
nServer:    The server connection handle that will own the new object.        Pass a 0 (zero) as the 
server handle and NWLib automatically uses the 'primary' server connection handle.

objectName : String        The name of the new object to create.    Not case sensitive.

objType : TObjType      A valid Netware object type, as defined in the NWLib include file (nw_user, 
nw_group, etc.).

fullName:    String        The object's new Full Name.    Some object types do not contain a full name 
property, in which case this parameter will be ignored.    Pass an empty string if you do not wish to 
specify the object's full name.

password:    String        The object's new login password, if applicable.    Pass an empty string if you 
want to prompt the user on initial login to the server.

permanent:    Boolean        If you want to create an object that exists until you physically delete it, 
specify true.    Otherwise, the object is automatically removed from the file server when the server is 
brought down.    A normal user created with the standard Netware tools is a permanent user that 
exists until removed.

readSecurity:    TNWFlags      The object's read access level.    A user reading information about the 
user must contain a read Access level equal or greater than the user's read access level in order to 
obtain the information.    The standard user read access level is BS_LOGGED_READ, meaning only 
logged-in users can read public information about this object.        The complete listing of object read 
access levels is specified the NWLib include file.

writeSecurity:    TNWFlags      Just as an object must contain a read access level, it must also contain 
a write access level.    A user must have a write access level equal to or greater than the object's 
write access level to modify the object in any way.    The standard user read access level is 
BS_SUPER_WRITE, which means only a SUPERVISOR can change or delete the object.    The 
complete listing of object write access levels is specified the NWLib include file.



Returns
Boolean.    True if the new object is created on the specified server.    False usually indicates an 
invalid server connection handle or insufficient rights on the specified server.

Example
if createObject( 0,

'newUser1',
nw_user,
'New User Number One',
'zippitydodahday',
true,
BS_LOGGED_READ,
BS_SUPER_WRITE)    then

      okBox('User Created Successfully!') ;

See Also
deleteObject
addUserToGroup
writeItemProperty
changeObjectSecurity
changePropertySecurity
modifyTrusteeRights



createProperty : boolean
All Netware objects contain at least one property automatically associated with it when the object is 
created by standard Netware tools.    For instance, a standard Netware User Object contains several,
such as 'IDENTIFICATION', which holds the user's full name, and 'GROUPS_I''M_IN'.    Each 
standard Netware object type contains a unique set of default properties which are usually created at
the time the object is created.

Properties can be either BF_ITEM or BF_SET types.    BF_ITEM properties contain a SINGLE 
ENTRY up to 128 characters in length.    For instance, a user's IDENTIFICATION property is of type 
BF_ITEM, since you can create only a single full name for the user.    Conversely, a user property 
such as 'GROUPS_I'M_IN' is of the BF_SET Property type, since a User Object can belong to more 
than one Netware group.

You can create any object property you desire.    Netware ignores any properties that do not relate to 
the operation of the network itself.

Parameters
nServer:    TNWConnHandle        The server connection handle that owns the object in which the new 
property is to be created.      Pass a 0 (zero) as the server handle and NWLib automatically uses the 
'primary' server connection handle.

objectName:    String      The name of the object that receives the new property.

propertyName:    String.    If creating a Netware property, ensure it exactly matches the required 
property as specified in the Novell API documentation, or any third-party books on Netware internals. 
If creating a new property that is ignored by Netware, specify any continuous string, without spaces 
or ascii characters greater than 128.    Not case sensitive, as it will be converted to uppercase.

propertyTypeFlag:    TNWFlags      BF_ITEM or BF_SET

permanent:    Boolean      Specify true if the property is to remain on the server until it is physically 
deleted.    False means the property is automatically deleted when the network server is brought 
down.

readSecurity:    TNWFlags      Specifies a bindery access level that a user must posess in order to 
read the specified property.    A complete listing of the read security constants is contained in the 
NWLib include file.    A standard for most Netware properties is BS_LOGGED_READ, which means 
any logged-in user can read the information contained in the specified property.    Of course, the user 
must also have sufficient rights to the object itself in order to read the object in the first place.

writeSecurity:    TNWFlags        Specifies a bindery access level that a user must posess in order to 
write information into the specified property.    For example, a user's 'IDENTIFICATION' property is 
created with the BS_OBJECT_WRITE access level, meaning the user or supervisor object can 
change the user's full name property.    The object's write access level takes precedence over the 
property write access level, which means an object must have the required access rights in order to 
write to the object itself, no matter what the property access level specifies.

Returns
Boolean.    True if the property is created successfully for the specified object.



Example
if createProperty (0,

'GUEST',
nw_user,
'ENTRY_DOORS_ALLOWED',
true,
BS_OBJECT_READ,
BS_SUPER_WRITE) then

    OKBox('User Property Successfully Created!') ;

See Also
Paragraph



createSemaphore : TNWSemaHandle ;
Creates or accesses a 'flag' on the server, with a specified number of available slots.    You can use 
semaphores for such utility functions as limiting the number of simultaneous accesses to a network 
resource or program.    The file server handles the details of the semaphore, such as freeing the slot 
after a workstation disconnects from the network, etc.

If the semaphore already exists, the station count using the semaphore is incremented.    If the 
maximum number of stations is already using the semaphore,    zero is returned.

A Netware semaphore resource also contains a 'value' data value which you can assign any way you
like, using the incSemaValue and decSemaValue functions.    Initially, Netware assigns the max. 
station count parameter to this value.

Parameters
nServer        :    TNWConnHandle.    The server in which to store the semaphore.

SemaphoreName :    string.    The name of the semaphore to create/use on the server.

MaxInstances:    word.    The maximum number of stations which can access this semphore at the 
same time.    For instance, if you specify '13' as this parameter, no more than 13 workstations can 
open this semaphore at the same time.    This number is also used for the beginning semaphore 
'value', which can be used to store additional flag information of your choice.    

The MaxInstances number is ignored unless it is the inital call to the named semaphore on the 
server.

Returns
TNWSemaHandle.    The handle to the new semaphore.    This handle must be used to free the 
semaphore resource when the module ends.      If no more stations slots are available on the 
specified semaphore, a 0 (zero) returns.

Example
var
    semaHandle :    TNWSemaHandle ;
begin
      semaHandle := createSemaphore(0,'NWLIB',10) ;
      if (semaHandle > 0) then
              begin
                      winExec('notepad.exe g:\secret.txt') ;
                      freeSemaphore(0,semaHandle) ;
              end
      else
              alertBox('Max Stations Reached!') ;    
end;

See Also
freeSemaphore
querySemaphre



incSemaValue
decSemaValue



decSemaValue : boolean
Decreases the arbitrary value of the specified semaphore.

Parameters
nServer:    The server connection handle which owns the semaphore to decrement.

semaHandle:    TNWSemaHandle.    The semaphore handle to decrement.

amount:    The amount to subtract from the semaphore value.

Returns
Boolean.    True if the call is successful and the semaphore value is decremented the specified 
amount.

Example
if decSemaValue(0,semaHandle,5) then
          close ;

See Also
incSemaValue



deleteObject : boolean
To complete remove an existing Netware object, you simply make one function call, and NWLib takes
care of the rest.    On success, the specified object is completely eradicated from the file server.

Parameters
nServer:    TNWConnHandle        The server connection handle that owns the object    to be deleted      
Pass a 0 (zero) as the server handle and NWLib automatically uses the 'primary' server connection 
handle.

objName:    String.    The name of the object in which to delete.

Returns
Boolean.    True if the object is deleted.    False usually indicates the user making the call is not a 
SUPERVISOR, or the object does not exist on the specified server.

Example
if deleteObject('BUZZLITE') then
        okBox('Woody Was Here') ;

See Also
renameObject, createObject



deleteObjectFromSet : boolean
In order to remove an entry from an object's property that is defined as a BF_SET type, you'll need to
use this function call.    As you probably already know, an object's property can be defined as either 
BF_ITEM or BF_SET.    BF_SET property types can contain many individual entries, such as a group 
object can contain many members in the 'GROUP_MEMBER' set-type property
.

Parameters
nServer:    TNWConnHandle        The server connection handle that owns the object in which the entry
is be remove from the set-type property.    Pass a 0 (zero) as the server handle and NWLib 
automatically uses the 'primary' server connection handle.

objName:    String        Specify the object containing the BF_SET type property that contains an entry 
that needs to be deleted.

propName:    String      Specify the property name that contains the entry you'd like to remove.

memberName:    String.    The actual entry that you'd like to remove from the BF_SET property.

Returns
Boolean.    True if the member is removed from the set-type property.    False usually indicates a bad 
server/objectName combination, or you do not have a sufficient bindery write access level to the 
property to delete the entry.

Example
if deleteObjectFromSet( 0,

'Laser_1',
'Q_OPERATORS',
'JOEY') then

    okBox('Joey Is No Longer a Queue Operator;;' + 
'That Should Teach Him to Delete our Print Jobs!!') ;

See Also
addObjectToSet
deleteUserFromGroup
deleteProperty
deleteTrusteeRight



deleteProperty : boolean
Use this function to complete remove any type of property that a Netware object contains.

You should not delete an object's default property types, such as a user's 'IDENTIFICATION' or 
'GROUPS_I''M_IN' properties.    Doing so will cause error messages to appear in Netware tools such 
as SYSCON, or may cause other programs to fail to recognize valid objects if they expect particular 
properties to be present.

Parameters
nServer:    TNWConnHandle        The server connection handle that owns the object in which the 
property is to be deleted.      Pass a 0 (zero) as the server handle and NWLib automatically uses the 
'primary' server connection handle.

objName:    String.    The name of the object that contains the property to be deleted.

propName:    String.    The name of the property to delete.

Returns
Boolean.    True on success or False if something fails, such as inadequate bindery access levels for 
the object and/or property.

Example
if deleteProperty( getServerHandle('FS1'),

'DEBRA',
'keys') then

    okBox('Key Property Removed from User Debra') ;

See Also
deleteObjectFromSet
writeItemProperty
createProperty
getPropertyList



deleteQueueJob : boolean
Removes a job from a print queue.

Parameters
queueJobInfo : TNWQueueJobInfo.    A structure containing at least the server connection handle, 
the print queue name, and the job ID.

You must supply at least the first three elements of the queueJobInfo structure in order to properly 
call this function.

Returns
Boolean.    True if the prinb job was deleted from the queue.    False usually indicates one or more of 
the first three elements of queueJobInfo are invalid.

Example
var
    tempList : TStringList ;
    queueJobInfo : TNWQueueJobInfo ;
    serverConn : TNWConnHandle ;
    queueName : string ;
begin
        serverConn := getPrimaryServerID ;
        queueName := 'laser1' ;
        templist := TStringList.create ;
          if getQueueJobList(serverConn,queueName,tempList) then
                  begin
                              queueJobInfo.nServer := serverConn ;
                              queueJobInfo.cQueue := queueName ;
                              queueJobInfo.jobID := TNWQueueJobID(tempList.objects[0]) ;    
                              if deleteQueueJob(queueJobInfo) then 
                                      okBox('Queue Job Deleted!') ;
                  end;
      tempList.free ;
end;

See Also
getQueueJobInfo
setQueueJobInfo
getQueueJobList
getQueueJobNumbers



deleteTrusteeRight : boolean

Allows a user with SUPERVISOR rights to delete a Netware object's trustee access right.    These 
rights control the amount of access privileges an object posesses to a particular volume/directory.

Parameters
nServer : TNWConnHandle.    The Server connection handle that owns the object in which the trustee
rights are to be deleted.    

Pass a 0 (zero) to this function and NWLib will automatically use the 'primary' server connection 
handle (same as getPrimaryServerID returns).

cUserName:    String.    Specify the Login Name of the user to modify.    

cVolume:    String.    Specify the name of the volume on the server that contains the directory.    You 
can specify a blank parameter ('') if the complete volume:directory path is included in the cPath 
parameter.

cPath:    String.    Specify the complete directory path.    You can include a volume in the path string if 
the cVolume parameter is empty.

Returns
Boolean.    True if the operation was successful on the specified user.    False if an error occurs.    
Likely problem is insufficient bindery access rights to the specified object.

Example
if deleteTrusteeRight( getPrimaryServerID,

'GUEST',
'',
'sys:public') then

        okBox('Trustee Right Deleted Properly');

See Also
getServerHandle
getPrimaryServerID
modifyTrusteeRights
getTrusteeList



deleteUserFromGroup : boolean
Use this simple and quick function call to remove a user from a specified group on any server 
attached to the workstation.    

You must have BS_SUPER_WRITE or access levels to the user and group objects in order to 
perform this function.

Parameters
nServer:    TNWConnHandle        The server connection handle that owns the user and groups to 
modify.    Pass a 0 (zero) as the server handle and NWLib automatically uses the 'primary' server 
connection handle.

groupName:    String.    The name of the group containing the user to delete.

userName:    String.    The name of the user to remove from the group. 

Returns
Boolean.    True if the user is removed from the desired group.    The user then loses all connection 
with the group, including trustee rights and all other priviledges assigned to the group object.

Example
if deleteUserFromGroup( getPrimaryServerID,

'EVERYONE',
'arnoldziffle') then

          okBox('User Removed from the Group') ;

See Also
addUserToGroup
deleteObject
deleteObjectFromSet



disableLogins : boolean
Use DisableLogins when you need to be sure no one logs into a file server.    For instance, you may 
be performing a VREPAIR or something, and want to make sure that no one gets lost in lotus-land 
while this is occurring.

Users which are currently logged in are not affected by this function.

Be careful!    if you disable logins, logout and then leave the network with no active Console 
Operators in which to re-enable logins, you'll have no recourse but to use the physical file server 
console in which to type in the 'Enable Logins' command.    That might sound easy, but what if we're 
dealing with a server accessible only over a T1 connection 2500 miles away?    "Uh, yes...this is Jim 
from Houston.    Do you have anyone over there that can enable logins to the file server for me?    I 
accidentally locked everyone out.    Yeah.    Uh-huh.    OK, press Alt Esc...................
[tickitytickitytypinginthebackground].....Try Holding down the alt key.    It says A-L-T on it..."

Parameters
nServer:    TNWConnHandle.    The server connection handle in which to disable logins.      Pass a 0 
(zero) as the server handle and NWLib automatically uses the 'primary' server connection handle.

Returns
Boolean.    True if the server logins were actually disabled.      If users try to attach to the server, the 
Netware shell returns an error message and refuses attachment to the server.

Example
if disableLogins(getPrimaryServerID) then
      OKBox('Server Logins Disabled!') ;

See Also
enableLogins, NWLogout, NWLogin



DownServer    : Boolean
DownServer immediately brings down a Netware File Server without any warnings or confirmations.   
Any open files are immediately closed by the Netware operating system, but any unsaved changes 
still at the workstation will not be saved.    

You must be a Console Operator to bring a file server down using this function.

Parameters
nServer:    TNWConnHandle ;

Returns
Boolean.    True if the file server was actually brought down. 

Example
var
    cserver: string ;
begin
    cserver :=    getServerName(getPrimaryServerID)) ;
    if YesNoBox('Bringing Down Server ' + cserver) and
          downServer(getPrimaryServerID) then
                  okBox('File Server ' + cserver + ' Downed!) ;
end;

Sub Heading
Paragraph



enableLogins : boolean
Perform this command to enable logins to the file server, if they had previously been disabled via the 
NWLib disableLogin function, or through the standard netware console command.

You must be a console operator in order to enable logins to a file server.

Parameters
nServer : TNWConnHandle.    The server connection handle in which to enable logins.

Returns
Boolean.

Example
if enableLogins(getPrimaryServerID) then
      okBox('Server Logins Enabled!') ;

See Also
disableLogins, NWLogin



endCap : boolean
Use the endCap function when you want to terminate a Capture environment already in place on the 
workstation.    The specified port is returned to non-redirected mode, so if any print data arrives at the
port, it will be directed to the local device.

Parameters
nPort : TNWLpt.    The LPT port number.

Returns
Boolean.    True if the endCap was successful.        False means the port is not valid on the 
workstation.

Example
if endCap then
    okBox('Local Print Mode Restored') ;

See Also
Capture, setCaptureFlags, getCaptureFlags



freeSemaphore : boolean
Releases the resources associated with a semaphore on the file server and decrements the active 
station count on the semaphore, allowing other workstations to access the semaphore.

You should always free a semaphore before allowing it to fall off scope.    Otherwise, the semaphore 
flag will not be cleared until the workstation clears the connection to the server.

If the workstation is the last using the semaphore, the file server automatically clears any allocation 
left for the semaphore.

Parameters
nServer:    TNWConnHandle.    The server connection handle that owns the semaphore.
Pass a 0 (zero) as this parameter to default to the current server.

semaHandle:    TNWSemaHandle.      The Semaphore handle to clear.

Returns
Boolean.    True if the semaphore is cleared and the station count is decemented.
False indicates a bad semaphore or server handle. 

Example
if freeSemaphore(semaHandle) then
      close ;

See Also
createSemaphore



fullName : string
Use this function to query the Netware Bindery or NDS system (at the current context)    and return 
the full name of any user logged in at any connected server.

Parameters
nServer:    TNWConnHandle        The server connection handle that owns the object    to query      Pass
a 0 (zero) as the server handle and NWLib automatically uses the 'primary' server connection 
handle.

cUserID : string.    The name of the user you want to query.

Returns
String:    The full name of the specified user on the current server.    The full name can be specified in 
Netware using the SysCon or NetAdmin programs.

Example
edit1.text := FullName(0,WhoAmI(0)) ;

See also
NDSWhoAmi



getBannerUserName : string
Use getBannerUserName to return a string containing the workstation's current Capture environment
Banner User Name.

Parameters
none.

Returns
String.    The current Banner User Name.

Example
var
    cbanner : string ;
begin
    cbanner := getBAnnerUserName ;
    okBox('Name Printed on Banners: ' + cBanner) ;
end;

See Also
setBannerUserName, Capture, setCaptureFlags



getBinderyList : TStringList
Create a listbox or StringGrid, then call this function once and instantly fill up your list with all network
users, the names of the print queues on the current server, group names, etc.    The return value is a 
TStringList, so you can use the output directly, without any fuss or re-entrant calls to the Netware 
API.    NWLib takes care of all the messy details for you.

Parameters
nServer:    TNWConnHandle        The server connection handle that owns the object    to be queried      
Pass a 0 (zero) as the server handle and NWLib automatically uses the 'primary' server connection 
handle.

nObjType : TObjType.    The type of object to return.    Use nw_user, nw_group, nw_printq, etc.    See 
the NWLIB include file for a complete listing of all possible netware object types.

Returns
A TStringList full of the objects you want.    All neatly lined up and ready to be placed into an object 
that contains a TStringList type property, or acted upon iterively in your programs.

Example
var
    myList : TStringList;
    ntemp : word ;
begin    
    myList := TStringList.Create ;
    mylist := GetBinderyList(GetPrimaryServerID,nw_user);
    for ntemp := 1 to myList.Count do begin
          okBox(mylist[ntemp-1] + ' is a User on this Network') ;
    end;
    winSuper.userList.items.addStrings(mylist) ;
end;
            



getBroadcastMode : boolean
getBroadcastMode tells you if the workstation has disabled network broadcast notification messages 
using the CASTOFF command or other means (such as NWLib's own setBroadcastMode function).

Each server stores it's own setting for a user's preference for broadcast mode.

Parameters
nServer:    TNWConnHandle        The server connection handle that owns the object    to be queried.     
Pass a 0 (zero) as the server handle and NWLib automatically uses the 'primary' server connection 
handle.

Returns
Boolean:    True if the workstation can receive network broadcasts, and False if they have been 
disabled.

Example
if getBroadcastMode then
    caston.checked := True ;



getCacheInfo : boolean    (Netware 4.x)
When you need to check out a server's memory cache statistics, create a timer object, then have it 
grab them by making a call to getCacheInfo every 1 or 2 seconds.    A rich set of statistics is returned 
in your referenced structure.

This function can only be used on connections to Netware servers 4.x and higher.

Parameters
nServer : TNWConnHandle

The server connection handle to query.    Must be a 4.x server.

var cacheInfo: TNWMemCacheInfo
Your referenced record structure.    If the call is successful, it is
filled with cache statistics.

Returns
Boolean.    True if the call is successful and the referenced data structure is populated with 
information.

Example
var
    memCacheInfo : TNWMemCacheInfo ;
begin
    if getCacheInfo(getPrimaryServerID,memCacheInfo) then
        okBox('Server Write Count: ' + intToStr(memCacheInfo.diskWriteCount)) ;
end;

See Also
getDiskCacheStats, getServerStats, getUserStats



getCaptureFlags : boolean
Use getCaptureFlags to initialize a TNWCaptureFlags record structure with current capture 
environment settings, such as the print queue name, number of copies, etc.      You can use this 
record structure to pass to a new Capture environment to set that Capture environment up just like 
the old one, or make changes to the structure, then pass it along to another Capture environment to 
adjust the settings any way you desire.

Parameters
nPort : TNWLpt.      The local LPT port number.    Usually 1 to 3.

VAR CaptureFlags : TNWCaptureFlags.    The record structure, passed by reference, which will 
contain the various capture environment settings.

Returns
Boolean.    True if the record structure was properly filled.    Note that if a capture environment is not 
in place on the specified port, default information is placed into the record structure, but the queue 
name will be empty and the server connection handle value will be 0.    You can test for these 
conditions, or use the isCaptured function to test for a non-captured port.

Example
var
    captureFlags : TNWCaptureFlags ;
    nLPT : TNWLpt ;
    oldqueue : string ;
begin
        nLPT := 1 ;      
        if getCaptureFlags(nLPT,captureFlags) then
              begin
                  captureFlags.formfeeds := False ;      { /nff }
                  captureFlags.banner    := '' ;                          { /nb }
                  captureFlags.tabSize := 0 ;                        { /nt    }
                  oldqueue := captureFlags.qname ;      { i.e. Save old Capture, if you need }
                  Capture('fs1','printer1',nLPT) ) then
                      begin
                                setCaptureFlags(GetPrimaryServerID,nLPT,captureFlags) ;
                                okBox('Print Redirected to FS1/Printer1') ;
                      end;
              end;
end;

Sub Heading
Paragraph



getConnectedServerList : TStringList
When you need to get a listing of servers in which the current workstation is currently logged in, drop 
in this function.    You'll get back a TStringList in which you can use as the foundation of a visual 
control, or loop through and do custom processing on each element.

Parameters
None

Returns
TStringList:    A complete listing of servers in which the current workstation is logged into.

Example
var
    templist : TStringlist ;
    nloop : byte
begin
    templist := TStringList.Create ;
    tempList.AddStrings(getConnectedServerList) ;
    for nloop := to templist.Count do begin
            okBox('Server Name: ' + templist[nloop-1]) ;
    end;
end;



getConnectID : TNWConnHandle
getConnectID returns a workstation's connection number to the default file server. This can range 
from 1 to the maximum number of Novell workstation connection licenses you own.    For example, a 
250 user Netware system's workstation connection numbers can range from 1 to 250.    You need to 
pass a workstation connection number when attempting to obtain information about the workstation.

Parameters
nServer:    TNWConnHandle.    The connection handle of the server in which to query.    Pass a 0 
(zero) as this parameter and the default server connection handle is used.

Returns
nConnNumber : TNWConnHandle.    The workstation connection number to the default file server.

Example
myConnNumber := GetConnectID(0) ;



getConnectInfo : boolean ;
Use this function to obtain general-purpose information about an active connection on a file server. 

Parameters
nServer:    TNWConnHandle        The server connection handle that owns the object    to be queried.     
Pass a 0 (zero) as the server handle and NWLib automatically uses the 'primary' server connection 
handle.

nConn:    TNWConnNumber.    The user's connection number to the server you want to query.

VAR connectInfo : TNWConnectInfo.    A referenced structure that contains general purpose 
information about the desired connection.

Returns
Boolean.    True if the referenced structure is filled with general purpose connection information.

Example
var
    connectinfo : TNWConnectinfo ;
    nConns: word ;
    connList : TConnList ;
    nloop : word ;
begin
    getUserConnList(getPrimaryServerID,'JIM',nconns,connList) ;
    for nloop := 1 to nconns do begin
          if getConnectInfo(getPrimaryServerID,connList[nloop-1],connectinfo) then
                okBox('Found Net Address: ' + connectInfo.internet) ;
    end;
end;

See Also
getUserConnList



getDeletedFileInfo : boolean ;
You'll use getDeletedFileInfo when you want to return information about a file that has been deleted 
from a network volume.    Important information, such as the file deletor, size, and delete date/time is 
obtained from a referenced structure by making this single function call.    

Of course, the calling workstation must have sufficient rights to see any directory's deleted file 
information.    If not, False is returned and the referenced    structure is not filled with information.

Parameters
cfile: string    

The complete path and filename of the deleted entry.    
The file must have been deleted from a network volume.

deletedFileInfo :TNWDeletedFileInfo
A predefined structure passed by reference.    On 
successful return, this structure is passed back to you filled with
all kinds of interesting information about the file.

Returns
Boolean.      True if the call found the file and obtained information.

Example
var
    deletedFileInfo : TNWDeletedFileInfo ;
begin
    if getDeletedFileInfo('z:\help.nfo',deletedFileInfo) then
          okbox('File: ' + deletedFileInfo.name) ;
end;

See Also
Paragraph



getDeletedFiles : boolean ;
You send getDeletedFiles a server connection handle and a path specification, and you get back a 
TStringList of all deleted files that are still recovereable.    Very handy if you are writing a Salvage 
interface utility, for instance.

Parameters
nServer : TNWConnHandle.    The server that contains the deleted file list.
cPath: string.    The complete path and file specification.    Wildcards OK.

Returns
TStringList:    The result of the search using the path and file specification.    Since this return value is 
a TStringList, you can easily incorporate the information into your listBoxes and stringGrids.

Example
begin
    listbox1.addStrings(getDeletedFiles(getPrimaryServerID,'z:\*.*')) ;
end;

See Also
getDeletedFileInfo, getVolFileList, getFileInfo, getVolumes



getDiskCacheStats ; boolean
If you are connected to a Netware 2.2 server, you can call this function to obtain detailed information 
about the server's disk caching activities.

Parameters
nServer : TNWConnHandle.    The connection handle of the Netware 2.2 server.

var diskCacheInfo : TNWDiskCacheInfo.    A referenced structure that holds the statistical information
if the call is successfully performed.

Returns
Boolean.    True if the referenced array is filled with disk caching information.

Example
var
    diskCacheInfo : TNWDiskCacheInfo ;
begin
    if getDiskCacheStats(getPrimaryServerID, diskCacheInfo) then
          okBox('Disk Writes: ' + intToStr(diskCacheInfo.diskWriteRequests)) ;
end;

See Also
getServerStats, getFileSysStats, getVolinfo



getEffectiveRights : boolean
When obtaining an object's access level to a directory, Netware uses several factors to compute the 
true access level granted, such as the Inherited Rights Mask and/or volume restrictions.    Although 
specific access rights may be granted to the object, these rights may be decreased depending on 
such factors.

NWLib provides this function so you know precisely the current object's computed access rights to a 
particular directory when placed in the context of the environment at hand.    Good information to 
have when your program needs to know if the user can write to a particular directory or not.

Parameters
nServer:    TNWConnHandle        The server connection handle that owns the object to query.    Pass a
0 (zero) as the server handle and NWLib automatically uses the 'primary' server connection handle.

pathName:    String      The complete pathname, including the volume or drive letter in which the 
effective rights are to be computed.

VAR rightsList:    TNWRights      A predefined record structure containing each of the available rights 
in the directory.

Returns
Boolean.    True if the call is successful and the referenced variable is populated with computed 
effective rights to the specified directory.

Example
var
    rightsList : TNWRightsList ;
begin
    result := false;
      getEffectiveRights(0,

'sys:/apps/einstein/workfiles',    {or g:\apps\....} }
rightsList) ;

    if (rightsList.write or 
          rightsList.supervisor)    then 
                result := true ; 
end;

See Also
getObjectDirRights
modifyTrusteeRights
deleteTrusteeRight



getFileInfo : boolean ;
getFileInfo can give you details about a file that exists on a Netware volume.      Some file information,
such as the file's Owner and archiver Object Name, can only be obtained by making a call to this 
function. 

Parameters
cfile : string

The complete pathname to the desired file.    Wildcard are 
NOT allowed.

fileInfo : TNWFileInfo
A structure passed by reference which contains the details 
about the file.    If the call is successful, you can obtain data
from the fields of this structure.

Returns
boolean.    True if the call is successful and elements are written into the referenced data structure.

Example
var
    fileInfo : TNWFileinfo
begin
    if getFileInfo('z:\public\net$log.dat',fileInfo) then
          okbox('I got: ' + fileInfo.name) ;
end;

See Also
getDeletedFileInfo, getVolFileList, getVolumes



getFileSysStats : boolean
If you are connected to a Netware 2.2 server, you can use this function to obtain detailed information 
about a file server's file system activities.

Parameters
nServer : TNWConnHandle.    The server to query.

var fileSysInfo : TNWFileSysInfo.    A referenced array that holds all statistical information if the call is 
successful.

Returns
Boolean.    True if the call is successful and the referenced array is filled with the server's file system 
statistical information.

Example
var
    fileSysInfo : TNWFileSysInfo ;
begin
    if getFileSysStats(getPrimaryServerID, fileSysInfo) then
          okbox('Server Read Requests: ' + 
                                intToStr(fileSysInfo.totalReadRequests)) ;
end;

See Also
getServerStats, getUserStats



getFirstNetDrive : char
getFirstNetDrive simply returns the first Netware drive letter encountered.    You can use this to 
determine where to place a user after a logout command is executed.

Parameters
None.

Returns
Char:    the first drive letter encountered.    This can vary, depending on the workstation's LASTDRIVE
setting (config.sys) and parameters specified in the NET.CFG file.

Example
var
    chtemp : char ;
begin
    chtemp := getFirstNetDrive;
    if map(chtemp,'fs1/sys:') then
        OKBox('Good Job!') ;
end;



getMapInfo : boolean
Retrieves information about a drive mapping, such as the host server, path and drive status flags.

Parameters
drive    :    char.    The drive letter to query. 
var    mapInfo :    TNWMapInfo.    Filled with infomation relating to the mapped resource upon 
successful execution of the function.

 Returns
Boolean.    True on success.    False usually indicates the drive is not a shared resource.

Example
Paragraph

See Also
map
mapShow
mapDelete



getMaxPrinters : byte
getMaxPrinters simply returns the maximum number of printer ports supported by the current version
of the Netware shell.    IPX/NETX networks support LPT1 to LPT3, and most VLM environments 
support ports up to LPT9.

Parameters
none.

Returns
Byte.    The maximum number of ports available on the workstation.

Example
var
    nports : byte
begin
    nports := getMaxPrinters ;
    if (nports > 0) then
            okBox('You have ports!;;I'd have that looked at if I were you.') ;
end;

See Also
Capture, setCaptureFlags, getCaptureFlags, isCaptured



getMemberList : TStringList
In one simple function call, you can get the complete contents of a Novell Group into a TStringList.    
You can use this list as a source for a TListbox or TStringGrid, or you can create a loop and process 
each of the items in the list.

Parameters
nServer:    TNWConnHandle        The server connection handle that owns the object    to be queried.     
Pass a 0 (zero) as the server handle and NWLib automatically uses the 'primary' server connection 
handle.

cGroupName: string.    The name of the group you want to list.    EVERYONE is a common group 
name in Netware.

Returns
TStringList.    A listing of the group.    One member on each line of the TStringList.

Example
var
    myList : TStringList ;
    ntemp : word ;
begin
      mylist := TStringList.Create;
      myList := GetMemberList(GetPrimaryServerID, 'EVERYONE') ;
      for ntemp := 1 to myList.count do begin
          okbox(myList[ntemp-1] + ' is an EVERYONE Member') ;
      end;
end;



getMyGroups :    TStringList ;
Returns a listing of groups in which a user is a member.    You must have console operator rights to 
return the names of groups a user belongs to other than yourself.

Since the return value of this function is in TStringList format, it's very easy to incorporate its output 
into onscreen objects such as Listboxes, StringGrids, etc.

Parameters
nServer:    TNWConnHandle        The server connection handle that owns the object    to be queried.     
Pass a 0 (zero) as the server handle and NWLib automatically uses the 'primary' server connection 
handle.

cUserID : string.    The user who's groups to obtain.    You must be a console operator if this cUserID 
is not you.

Returns
TStringList. The complete contents of the user's group membership list.

Example
begin
    listbox1.addStrings(getMyGroups(GetPrimaryServerID,'JIM')) ;
end;

See Also
isConsoleOperator, isMember



getNextNetDrive : char
getNextNetDrive returns the next free non-local drive letter.    You can use this to obtain a drive letter 
which is not already mapped.

Parameters
None.

Returns
char:    The drive letter of the first non-local network drive.    Any local devices are skipped.

Example
var
    chtemp : char ;
begin
    chtemp := GetNextNetDrive;
    if Map(chTemp,'fs1/sys:') then
          okBox('Way to Go!') ;
end;



getObjectDirRights : boolean
Use getObjectDirRights when you need to know exactly which directory rights are granted to a 
Netware object.

Parameters
nServer:    TNWConnHandle        The server connection handle that owns the object to query.    Pass a
0 (zero) as the server handle and NWLib automatically uses the 'primary' server connection handle.

objectName:    String        The object name whose directory rights are to be obtained.

pathName:      String      The complete pathname for which the object's trustee rights are obtained.    
You must include either the volume or drive letter in the fully-qualified path.

VAR rightsList:    TNWRights        A predefined record structure containing the object's native trustee 
rights at the given directory.

Returns
Boolean.    True if the call is successful, and the referenced TNWRights structure is filled with 
directory rights to the given pathname.

Example
var
    rightsList : TNWRightsList
begin
getObjectDirRights(0,

'STEVEG',
'sys:public',      {or z:\public, or z:.\, etc...}
rightsList) ;

if rightsList.supervisor then
    okbox('STEVEG has SUPERVISOR access to SYS:PUBLIC!') ;

See Also
getEffectiveRights
deleteTrusteeRight
modifyTrusteeRights



getObjectInfo : boolean
Use this function to determine an objects read/write security level, and if the object contains any 
defined properties.

Parameters
nServer:    TNWConnHandle        The server connection handle that owns the object to query.    Pass a
0 (zero) as the server handle and NWLib automatically uses the 'primary' server connection handle.

objectName:    String.    The name of the object to query.

VAR hasProperties:    Boolean.    On successful execution of the function, this variable contains a 
boolean value.    True if the specified objectName actually contains valid properties, or False if no 
properties exist for this object.

VAR readSecurity:    TNWFlags.    On successful execution of the function, this variable contains 
objectName's readSecurity access level.    User, Group and PrintQueue objects usually contain a 
BS_LOGGED_READ read access security level, which means any user logged into the server can 
read information from default properties.

VAR writeSecurity:    TNWFlags.    On successful execution of the function, this variable contains 
objectName's writeSecurity access level.    User, Group and PrintQueue objects usually contain a 
BS_OBJECT_WRITE write access security level, which means only the objectName itself or a 
SUPERVISOR can make changes to the default properties.      An object's IDENTIFICATION property
is BS_OBJECT_WRITE by default, which allows users to change their own Full Name property.

Returns
Boolean.    True if the function obtains the information properly from the Netware server.    False 
usually indicates the nServer/objectName parameters are not correct in the specified scope.

Example
var
    hasProps:    Boolean ;
    readAccess,
    writeAccess : TNWFlags ;
begin
    if getObjectInfo( 0,

'SUPERVISOR',
hasProps,
readAccess,
writeAccess) then

    begin
          case readAccess of

BS_ANY_READ :
okbox('Anyone Can Read') ;

BS_LOGGED_READ :
okbox('Only Logged-In Users Can Read') ;

BS_OBJECT_READ :
okBox('Only the Object and Supervisors Can Read') ;



BS_SUPER_READ :
okbox('Only Supervisors Can Read') ;

        end;
    end;
end;

Sub Heading
Paragraph



getObjectNumber : TObjID
getObjNumber is a basic building block function which the native Netware Object ID number, as it is 
stored in the Bindery/NDS.      For the most part, you'll probably use this function only in conjunction 
with GetObjName, which requires the output of this function as a parameter.    NWLib calls this 
function frequently to obtain data handles to specific objects in the Bindery/NDS.

Parameters
nServer:    TNWConnHandle        The server connection handle that owns the object    to be queried      
Pass a 0 (zero) as the server handle and NWLib automatically uses the 'primary' server connection 
handle.

objectName      : string.      The objectName you want to query.    Like SUPERVISOR, or PRINTER1.

nObjType : TObjType.    nw_user, nw_group, nw_printq, etc.    A Complete listing of possible object 
types can be found in NWLib's include file.

Returns
TObjID:    a long integer, as it is stored in the Netware Bindery/NDS.

Example
ntemp := NWGetObjNumber(0,'SUPERVISOR',nw_user) ;
if (ntemp > 0) then
    okBox('Supervisor is a valid Netware User') ;



getObjID : string
Returns an object's gives corresponding hexidecimal Object ID obtained from the Bindery or NDS (if 
the object exists within the current context)..

Netware automatically creates a directory for each user in the SYS:MAIL directory.    The name of 
those directories directly corresponds to the numbers that you receive back from this function.

It's important to note that Object ID's are not syncronized between servers, except the SUPERVISOR
user in the Netware 3.x world always has an Object ID of '1' ... for whatever that's worth.    

Parameters
nServer:    TNWConnHandle        The server connection handle that owns the object    to be queried      
Pass a 0 (zero) as the server handle and NWLib automatically uses the 'primary' server connection 
handle.

UserName : string        The User's Login Name which to query.

objType : TObjType      The object type of the given UserName, such as nw_user, nw_group, etc.    
NWLib's include file contains each of the possible object types.

Returns
String:    The user's Object ID, represented in hexidecial string format.    Common examples of the 
returned value are;    600001, 5000001, B7200046. etc.    The number is guaranteed unique to each 
user on a single server.

Example
var
    cfile : string
begin
    cfile := 'f:\mail\' + GetObjID(getPrimaryServerID,

'NEIL',nw_user) + '\2112.PEW' ;
    if fileExists(cfile) then
        okBox('TaDa!') ;
end;

See Also
NDSGetObjID



getObjName : string
Returns the Object's Name from a user's Raw Netware Object ID.

Unless you are reading Netware objects or properties directly, you'll probably never need to use this 
function.    NWLib automatically calls this function internally to convert data from the Bindery/NDS 
into a more human-readable format.

Parameters
nServer:    TNWConnHandle        The server connection handle that owns the object    to query      Pass
a 0 (zero) as the server handle and NWLib automatically uses the 'primary' server connection 
handle.

nObjID : TObjID.    This is a longint number, in lo-hi bit order.    This is the native format Novell uses to
store Object information.

Returns
String:    a UserID, like SUPERVISOR, JIMT or DEBRA.

Example
var
    ntemp : longInt ;
    ctemp : string ;
begin
    ntemp := 1029384;
    ctemp := getObjName(0,ntemp) ;    {'Billy' or something, if valid }
end;



getObjType : TObjType
Use this function to determine a Netware object's data type, such as a User, Group, Print Queue or 
File Server.    

Parameters
nServer:    TNWConnHandle        The server connection handle that owns the object    to be deleted      
Pass a 0 (zero) as the server handle and NWLib automatically uses the 'primary' server connection 
handle.

cUserID : string      The UserID you need to query, such as SUPERVISOR.

Returns
The type of the user, such as nw_user, nw_group, nw_printQ or nw_server, etc.    Full object type 
constants are located in the NWLib include file.

Example
if getObjType(0,'SUPERVISOR') = nw_user then
    okBox('This Network Has a Guy Named SUPERVISOR on it') ;

See Also
getObjID
NDSGetObjID



getPathInfo: boolean
Separates individual path items from a string.    Allows for any valid path specification, such as:

server/vol:path
drive:path
vol:path
path
file

Parameters
pathSpec:    string.    The complete path specification, in any valid directory path format.    

Returns
boolean.    True if the path is parsed properly.    Note that this function does not verify if the path 
actually exists.

Example
var
      pathInfo : TNWPathInfo ;
begin
            if getPathInfo('z:\public',pathInfo) then
                    okBox('Server Name: ' + pathInfo.serverName) ;
end;

See Also
parseNetwarePath



getPrimaryServerID : TNWConnHandle
GetPrimaryServerID returns the workstation's connection handle to the default network server.    A lot 
of Netware function calls are 'server centric' and can return different information from server to 
server.    So, when you call these functions, you need to pass the server connection handle so NWLib
knows which server you intend to query for the results.    Use this function when you simply want the 
action to be performed on the default calling server, and do not want to call a server specifically.

On login, the server in which the login executes is considered the 'default' or 'preferred server' 
connection.    You can specify a preferred server in the boot-up NET.CFG or SHELL.CFG file.    See 
your network documentation for more information on these configuration files.

Parameters
None

Returns
TNWConnHandle:    The connection handle to the default server.    While there's not much you can do
with a server connection handle, there are plenty of other NWLib functions that can.

Example
myServerHandle := GetPrimaryServerID;



getPropertyList : TStringList
To obtain a listing of an object's properties, you can make one call to this function, and you'll get back
a TStringList containing the name of each of the properties which have been created for a specific 
object on the network.

You can use the output of this getPropertyList to fill listboxes and grids, or iterate through the list 
yourself to perform special processing, without the need to create linked lists or pointers.

Parameters
nServer:    TNWConnHandle        The server connection handle that owns the object to query.    Pass a
0 (zero) as the server handle and NWLib automatically uses the 'primary' server connection handle.

SearchValue:    String.    You can pass a single wildcard (asterisk: *) character to    obtain ALL 
properties for a particular object, or you can pass letters and a wildcard (gr*) to obtain a listing of 
properties that begin with a particular series of characters.    Or, you can pass an entire string of 
characters to obtain the propery name that matches your input, such as 'IDENTIFICATION'.

Returns
TStringList:    A completely initialized TStringList object that you can use as the basis for listboxes, 
string grids, etc.

Example
{assume you have a TListBox named PROPS on your form}

props.items.addStrings(
getPropertyList( getPrimaryServerID,

'SUPERVISOR',
'*')

) ;

--- or ---

if (getPropertyList( 0,
'SUPERVISOR',
'identification').count < 1) then

        alertBox('SUPERVISOR's INDENTIFCATION Property is Gone!') ;

See Also
getTrusteeList
deleteProperty
createProperty
writeItemProperty



getQueueJobInfo : boolean
Retrieves detailed information about a print queue job.

Parameters
jobInfo    : TNWQueueJobInfo.    A structure containing the server name, queuename, and queue job 
ID.    The remainder of the fields are filled in upon successful completiong of the function.

Returns
Boolean.    True if the queue job ID was read properly.    False usually indicates the queue job ID, 
server or queue name is invalid.    When reading live print queues, it's possible the queue job ID was 
removed from the queue right before your call the getQueueJobInfo, or right after the information is 
read.

Example
var
    queueJobInfo:      TNWQueueJobInfo ;
      ntemp : byte ; 
      serverConn : TNWConnHandle ;
      queueName : string ;
begin
        serverConn := getPrimaryServerID ;
        queueName := 'laser' ;
        if getQueueJobList(serverConn,queueName,,jobList) then
                begin
                        queueJobInfo.nServer := serverConn ;
                        queueJobInfo.cQueue := queueName ;
                        ntemp := 0 ;
                        while (jobList[ntemp] >0) do begin
                                  queueJobInfo. jobID := jobList[ntemp] ; 
                                  if getQueueJobInfo(jobInfo) then
                                              okBox('Job Owner: ' + queueJobInfo.ownerName) ;
                                inc(ntemp) ;
                        end;
              end;
end;

See Also
getQueueJobNumbers
getQueueJobList
setQueueJobInfo



getQueueJobList : boolean
Creates a fullly-formatted StringList displaying the contents of a specified print queue on a server.    
You get the same information you'd expect t see in PrintCon or any other Netware print queue query 
program.

Parameters
nServer:    TNWConnHandle.    The server which owns the queue in which to query.    You can pass a 
0 (zero) as this parameter to indicate the current server.

cQueue:    String.    The name of the print queue to query.

var JobList:    TStringList.    An initialized TStringList object.    It is filled with print queue job information
obtained from the specified queue.    Any existing elements in the StringList are removed prior to 
filling the list with new values.        Each element in JobList also contains the corresponding job's Job 
ID number, which you can use in other NWLib calls, such as getQueueJobInfo.    Typecase each 
element's 'object' to a TNWQueueJobID to extract it from the list.    See the example below for detail.

Returns
Boolean.    If the StringList is modified, True is returned.      False usually indicates an incorrect server 
handle or queue name.    True is returned and an empty stringList is returned if the print queue 
happens to be empty.

Note this function returns a 'snapshot in time.'    That is, the print queue jobs that exist at the time this 
call is performed are placed into the stringList.    The next time this call is performed, you may get an 
entirely different set of print queue jobs.

Example
var
    tempList : TStringList ;
    queueJobID : TNWQueueJobID ;
begin
            tempList := TStringList.create ;
            if getQueueJobList(0,'laser1',tempList) then
                      listbox1.items := tempList ;

          {here's how to get queue job ID from the first stringlist element}
          queueJobID := TNWQueueJobID(tempList.objects[0]) ;
 end;

See Also
getQueueJobNumbers,
getQueueJobInfo



getQueueJobNumbers : boolean
Retrieves a listing of all queue job numbers in a specified print queue at that instant in time.    Each 
time this function is called, it may return a different listing of print queue job ids, depending on the 
state of the jobs of the queue in question.

Parameters
nServer:    TNWConnHandle.    The file server handle that owns the print queue to query.

QueueName:    string.    The name of the print queue in which to query.

QueueJobList :    TNWQueueJobList.    A zero-based array of print queue job IDs.    You iterate 
through this list until you obtain a job ID of 0, or you pass the list's highest offset, which is 255.

Returns
Boolean.    True if this queue is read properly and joblist array is filled with the queue jobs IDs.    If 
there are no print jobs in the queue, the function returns true, but the first element in the joblist is 0.

Example
var
    jobList : TNWQueueJobList ;
begin
    if getQueueJobNumbers(0,'laser1',jobList) then
          begin
                        ntemp := 0 ;
                        while (jobList[ntemp] > 0) do begin
                                printLn('Job ID: ' + intToStr(jobList[ntemp])) ;
                                inc(ntemp) ;
                        end;
          end;
end;

See Also
getQueueJobList
getQueueJobInfo



getQueueOperators : TStringList
Use this function to obtain a complete listing of the object names that have been specified as valid 
Print Queue Operators.        Queue Operators can hold, delete and get information on a given print 
queue's job entries, even if they do not own them.

It's usually a good idea to grant Queue Operator status to a Group Name that is physically located 
near the printers, or to those that often send jobs to the printer. Otherwise, they'll constantly bother 
the system administrator to manage the print queue for them when someone sends 500 copies of a 
job and then logs out.

Parameters
nServer:    TNWConnHandle        The server connection handle that owns the object    to be queried.     
Pass a 0 (zero) as the server handle and NWLib automatically uses the 'primary' server connection 
handle.

queueName:    String.    The name of the print queue to query.

Returns
TStringList.    The output of this function can easily be incorporated into other VCL objects that 
contain a TStringList property, such as TListBox.

See Also
getQueueUsers
getQueueServers



getQueueServers    :    TStringList
Use this function to return a list of print servers that is currently directing output to a particular print 
queue.    A user must be a QueueOperator in order to retrieve the names of the print servers 
submitting jobs to the print queue.

Parameters
nServer:    TNWConnHandle        The server connection handle that owns the object    to be queried.     
Pass a 0 (zero) as the server handle and NWLib automatically uses the 'primary' server connection 
handle.

cQueue:    String.        The name of the print queue to query.

Returns
TStringList.      A complete listing of the print servers submitting print jobs into the queue.

Example
listbox1.items.addStrings(getQueueServers(0,'PRINTER1')) ;

See Also
getQueueUsers
getQueueOperators



getQueueUsers : TStringList
This function queries a particular PrintQueue object, and returns the names of the user objects 
contained in the Queue Users set property.    You can use the output of this function to verify a user 
can actually print to a specific print queue.

Parameters
nServer:    TNWConnHandle        The server connection handle that owns the object    to be queried.     
Pass a 0 (zero) as the server handle and NWLib automatically uses the 'primary' server connection 
handle.

cQueue:    String.    The name of the print queue to query.

Returns
TStringList.    The output of this function can easily be incorporated into VCL objects that contain a 
TStringList property, or you can iterate through the list yourself to locate a particular object name.

A list containing 0 entries is returned if the function call fails.

Example
listBox1.items.addStrings(getQueueUsers(0,'PRINTER1')) ;

See Also
getQueueOperators
getQueueServers



getServerDate : TDateTime
When you need to ensure a standardized date, use the getServerDate function.    The return value of 
this function is not affected by the workstation's date.    Good uses for this function are writing dates 
to time-sensitive data files that could be forged by changing the workstation's date using DOS' DATE 
command.

Parameters
nServer : TNWConnHandle.    The connection handle of the server you want to query.    You must be 
logged into the file server to perform this function.

Returns
TDateTime.    The date of the file server.    You can use any standard Delphi date functions to parse 
the return value.

Example
if getServerDate <> date then
    okBox('Please Stop Resetting Your PC Clock!') ;

See Also
getServerTime, setServerDateTime



getServerHandle : TNWConnHandle
Use getServerHandle when you know the physical name of a file server, and wish to retrieve it's 
connection handle.    Server connection handles are used quite frequently in NWLib, because they 
define precisely which server on the network to perform various function calls.

 A handy use for this function is iterating though a getConnectedServerList return list to perform 
actions on the various servers.

Parameters
cServer : String.    The name of the server you want to inspect.

Returns
TNWConnHandle.    The connection handle to the specified server.      0 if the server name is not 
valid.

Example
var
      nServer : TNWConnHandle ;
begin
    nServer := getServerHandle('FS1') ;
    if nServer > 0 then
        begin
              OKBox('You Are Logged Into FS1 Properly') ;
        end;
end;

See Also
getServerName, getConnectedServerList, sList, isLoggedIn, NWLogin



getServerHandleFromPath : TNWConn ;
Betcha someday you'll want    to find out the name of the server in which a drive mapping is based.    
With this function, you simply pass along a complete pathname, and it returns back to you the calling
workstation's server connection ID of the host server of that drive mapping.    

Once you have obtained a server's connection handle, you can perform just about any Netware call 
relating to that server, even if it's not your default or preferred server connection handle.

Parameters
cPath : string.    The complete pathname you want to query.    For instance if , 'g:\'    is a valid 
pathname on your network, it is a valid parameter for getServerHandleFromPath.

Returns
nConnHandle : TNWConnHandle.    The server connection handle.        On local or invalid pathnames,
0 is returned.

Example
var
    nConnHandle : TNWConnHandle ;
begin
    nConnHandle := getServerHandleFromPath('g:\') ;
    setPreferredServer(getServerName(nConnHandle)) ;
end;

See Also
setPreferredServer, all bindery/login/server functions.



getServerName : string
Use GetServerName to retrieve the name of a file server.    The calling workstation must be logged 
into the file server to be able to perform this function.    

Parameters
nServer: TNWConnHandle.    The connection handle to the file server.

Returns
string:    The name of the file server.

Example
var
    cserver: string
begin
    cserver := getServerName(getPrimaryServerID) ;
    okBox('You Are Connected to Server ' + cserver) ;
end;

See Also
sList, getConnectedServerList, getPrimaryServerID, getServerHandle



getServerSerial : longInt
Each file server on your network has it's own unique serial number.    getServerSerial simply retrieves
this number for you.    Good uses for this number are encryption keys, security, and copy protection 
schemes.

a Netware serial number is obtained from the Netware System1 diskette in a standard Netware 3.1 
installation, or from the CDROM in a Netware 4.x installation.    You cannot change a file server's 
serial number.

Parameters
cServer : string.      The name of the file server you wish to query.    You can query any file server in 
which you have an active login.

Returns
longint:    The file server serial number.

Example
var
    nserial : longint ;
begin
    nserial := getServerSerial('FS1') ;
    if nserial <> 39847763 then
        okBox('This is an Invalid Copy of WidgetWare!') ;
end;

See Also
getServerHandle, getServerName, getConnectedServerList, sList, NWLogin



getServerStats : boolean ;
With getServerStats, you're able to retrieve statistical information about any particular Netware 4.x 
server on your network.      With a little imagination and a few hours work, you can create network 
server monitoring and threshold alert systems.

Note:    Some of the returned values in the reference structure are only applicable for Netware 4.x 
servers.

Parameters
nServer : TNWConnHandle.    The server in which to query.

Returns
Boolean.    True if the call was successful, and the referenced structure is filled with desired 
information.

Example
var
    serverInfo : TNWServerInfo
begin
    if getServerStats(getPrimaryServerID,serverInfo) then
            okBox('Server Ticks: ' + intToStr(serverInfo.serverUpTime)) ;
end;

See Also
getUserStats



getServerTime : TDateTime
Use the getServerTime function to retrieve a file server's time.    You can use this function to ensure a
synchronized time is used throughout your program.

Parameters
nServer : TNWConnHandle.    The server connection to query.    You must be logged into the 
specified server to make this call.

Returns
TDateTime.    A standard Delphi TDateTime return value, which can be parsed, decoded or any other 
time-related function.

Example
var
    nHour : word;
    nMin    : word ;
    nSec    : word ;
    nMsec : word ;
    ntime : TDateTime;
begin
    ntime := getServerTime(getPrimaryServerID) ;
    DecodeTime(nTime,nHour,nMin,nSec,nMsec) ;
    if nHour = 7 then
        begin
              MessageBeep(mb_Exclamation) ;
              OKBox('Wake Up!    It's 7am You SleepyHead!') ;
        end;
end;

See Also
Paragraph



getTrusteeList : TStringList
Some objects, such as Users and Groups,    can contain trustee rights which allow access info 
specific directories and/or files.    You can obtain a complete listing of the trustee rights assigned to 
any object on the network with a single call to this function.

You must have Bindery Read Access Level of BS_SUPER_READ to the object in order to obtain a 
listing of the object's trustee list.

Parameters
nServer:    TNWConnHandle        The server connection handle that owns the object in which the 
trustee list is obtained.    Pass a 0 (zero) as the server handle and NWLib automatically uses the 
'primary' server connection handle.

objectName:    String.    The name of the object in which the trustee rights list is obtained.

Returns
TStringList    Each of the trustees and associated trustee rights are returned to you as an easy-to-use
TStringList object.    This enabled the use of the output of    this function as the basis for 
TListBox.items, or you can iterate easily through the list yourself using the inherent TStringList object
properties and methods.

An empty stringList is returned if the call fails, or the specified object contains no trustee rights.

Example
var
    cpath : string ;
    ntemp : word ;
    tempList : TStringList ;
begin
    result := false ;
    cpath := 'SYS:PUBLIC'
    tempList := getTrusteeList( getServerHandle('FS2'),

'SUPERVISOR') ;
    for ntemp := 1 to tempList.count do begin
        if (pos(cpath,tempList[nloop-1])>0) then
              begin
                      result := True ;
                      okBox('SUPERVISOR Has Trustee Rights to SYS:PUBLIC!') ;
                      break ;
              end; 
      end;
end;

See Also
getEffectiveRights
getObjectDirRights
getPropertyList



modifyTrusteeRights
deleteTrusteeRight



getUserConnList : boolean ;
When you need to find out how many times a user is logged in, and the logical connection numbers, 
getUserConnList is the function you'll use to get the information.

Parameters
nServer : TNWConnHandle.    The server in which to query.

cUserID : string.    The name of the user whose connection status you are obtaining.

var nConns:    word.    The number of connections in use by the specified cUserID is returned in this 
referenced variable upon successful completion of the function call.

var connList : TConnList.    The connection numbers in use by the specified cUserID is returned in 
this referenced array of connection IDs.    Each element in the returned list is of type 
TNWConnNumber.    

Returns
Boolean. True if the call is successful and the referenced items are filled properly.

Example
var
    nconns      : word ;
    connList : TConnList ;
    nloop            : word ;
begin
    if getUserConnList(getPrimaryServerID,'JIM',nconns,connList) then
            begin
                  for nloop := 1 to nconns do begin
                          okbox('Found Connection Number: ' + intToStr(connList[nloop-1])) ;
                  end;
            end;
end;

See Also
getUserStats



getUserStats : boolean ;
Under Netware 4.x, you can call getUserStats to return user input/output statistics and other 
connection information.    You must be a console operator to view statistical information about a 
connection.

Parameters
nServer : TNWConnHandle.    The host server connection handle.

nConn:    TNWConnNumber.    The user's connection ID.    Obtain it using GetUserConnList..

var connStats : TNWConnStats.    A referenced structure filled with values on successful completion 
of the call.

Returns
Boolean.    True if the call is completed successfully.

Example
var
    connStats : TNWConnStats ;
    connList      : TConnList ;
    nconns          :    word ;
    nloop                : word;
begin
    connList := getUserConnList(getPrimaryServerID,'JIM',nConns,connList) ;
    for nloop := 1 to nConns do begin
              if getUserStats(getPrimaryServerID,connList[nloop-1],connStats) then
                      okBox('Bytes Read: ' + intToStr(connStats.bytesRead)) ;
    end;
end;

See Also
getServerStats, getUserConnList



getVolFileList : TStringList ;
Use getVolFileList to retrieve the contents of a network volume.

Parameters
srchText : string.    The full path and file specification in which to search.      Wildcards are allowed.

Returns
TStringlist.    The contents of the specified path and file specification.    You can easily incoprorate the 
output of this function into your listbox and stringGrid objects.

Example
var
    tempList : TStringList ;
begin
    templist := TStringList.create ;
    templist := getVolFileList('z:\public\*.*') ;
    listbox1.items.addStrings(templist) ;
end;

See Also
getFileInfo, getDeleteFiles, getVolumes



getVolumes: TStringList ;
getVolumes is a convenient method to obtain a listing of available server drive volumes.    Since the 
return value of this function is a TStringList, you can easily incorporate the information into your 
ListBoxes or StringGrids.

Parameters
nServer: TNWConnHandle.    The server connection ID.

Returns
TStringList.    The listing of available mounted volumes on the specified server.

Example
begin    
    listbox1.items.addStrings(getVolumes(getPrimaryServerID)) ;
end;

See Also
Volinfo, getVolFileList, getFileInfo, getDeletedFiles



incSemaValue : boolean
Increments the arbitrary value of the specified semaphore.    Each semaphore    contains an arbitrary 
value that you can increment and decrement at will, to control whatever aspect of the environment 
desired.

Parameters

nServer:    TNWConnHandle.    The server that owns the semaphore to increment.    Pass a zero and 
NWLib defaults to the current server.

SemaHandle:    The semaphore handle previously obtained with a call to createSemaphore.

amount:    The amount to increment the semaphore value.    The semaphore value can contain from 0
to 127.

Returns
Boolean.    True if the value was incremented.    False indicates an invalid semaphore handle or no 
additional values are available.

Example

if incSemaValue(0,semaHandle,10) then
      ok('Incremented 10 times') ;

See Also
createSemaphore
decSemaValue



isCaptured : boolean
isCaptured can tell you if a particular LPT port on the workstation has been redirected to a network 
print device.

Parameters
nPort : TNLpt.    The LPT Port to check.

Returns
Boolean.    True if the port is redirected somewhere on the network.

Example
menuEndcap.enabled := isCaptured(1) ;

See Also
Capture, EndCap, setCaptureFlags, endCaptureFlags



isConsoleOperator : boolean
Query logged-in user's status to see if they have Console Operator rights.    You might call this before
attempting such functions as File Server statistics, LAN I/O information, or anything else that a 
regular Joe user should not be able to see.

Parameters
nServer:    TNWConnHandle        The server connection handle that owns the object    to be queried.     
Pass a 0 (zero) as the server handle and NWLib automatically uses the 'primary' server connection 
handle.

Returns
Boolean value.    True if the logged in User is a console operator on the given server.

Example
menuStats.enabled := isConsoleOperator(GetPrimaryServerID) ;



isInList : boolean
isInList simply checks to see if a particular user exists within a comma-delimited string.    isInList is a 
lot like IsMember.    However, IsMember checks only one user against one group at a time, and 
isInList compares a user against many users and/or groups in a comma-delimited string all at once.   
It's just like if you created your own loop and called IsMember on each element of a comma-delimted
list, skippnig anything that was not a group or did not equal the userID itself (which in fact is exactly 
what IsInList does!).

Parameters
nServer:    TNWConnHandle        The server connection handle that owns the object    to be queried.     
Pass a 0 (zero) as the server handle and NWLib automatically uses the 'primary' server connection 
handle.

cUserID : string.      The UserID you want to test

GroupList : string.    A comma-delimited list of users and/or groups that serve as the source data to 
test against.

Returns
True if cUserID exists anywhere in GroupList, including membership in one or more of any specified 
groups.

Example
menuLotus.enabled := isInList(0,WhoAmI(0),'BOB,JOE,ACCOUNTING,LOTUS') ;



isLoggedIn : boolean
IsLoggedIn can tell you if a particular user is logged into a file server in which you are connected.    
This is handy when you'd like to build a UserList of only those users that are actually logged into the 
network.

Parameters
nServer:    TNWConnHandle        The server connection handle that owns the object    to be queried.     
Pass a 0 (zero) as the server handle and NWLib automatically uses the 'primary' server connection 
handle.

cUserID : string.    The UserID you want to test, like SUPERVISOR or JOE.

Returns
Boolean.    True if the specified user is logged into the network.

Example
if isLoggedIn('SUPERVISOR') then
    SendLineMessage('SUPERVISOR','You Are a Nerd!') ;



isMember : boolean
Use this function when you need to know if a user is a member of a particular group.    For instance, 
you may have a need to restrict certain menu items to those users that are members of a particular 
group.    This function can be called directly to set a menu item's .enabled property, thereby disabling 
the item for users which are not members of the specified group.

Parameters
nServer:    TNWConnHandle        The server connection handle that owns the object    to be queried.     
Pass a 0 (zero) as the server handle and NWLib automatically uses the 'primary' server connection 
handle.

cUserID : string.    The UserID you want to test.    Like SUPERVISOR.

cGroup:    string.    The Group Name you want to validate against.    Like EVERYONE.

Returns
Boolean.    If cUserID is a member of the group specified in cGroup, TRUE is returned, FALSE if not.  
If the UserID or Group is invalid, False is returned.

Example
menuPack.enabled := IsMember(WhoAmI,'SUPERDUPER') ;



isNWManager : boolean
Use IsNWManager to find out if a user has been defined as a Netware Manager.      You can specify 
users as managers in the Novell SysCon and NetAdmin programs.

Parameters
nServer:    TNWConnHandle        The server connection handle that owns the object    to be queried.     
Pass a 0 (zero) as the server handle and NWLib automatically uses the 'primary' server connection 
handle.

Returns
Boolean:    True if the logged in user is a Netware Manager.    False if not.

Example
menuSuper.enabled := isNWManager ;



longSwap : longInt
Swaps the high-and-low order words in a longint integer type.    Since Netware stores most longints 
in reverse order, you'll need to use this function if you make any Netware API calls directly, and a 
longint data type is returned from the API call.

Parameters
longNumber : LongInt      This is the longint data type to reverse.

Returns
longInt.    The given longint, only swapped.

Example
var
    longnumber:    longint ;
begin
      longnumber := longSwap(1837837938) ;
end;



Map : boolean
Use the Map function when you want to create a drive mapping 'on the fly' within your application.      
You pass along a drive letter and complete netware-compatible path string, and NWLib allocates the 
drive for you and adds it to the available system drives.    You can then access the data contained in 
the path as if you had mapped the drive using standard Netware commands.

Parameters
cDrive : char.    The drive letter you want to create.
cPath : string.    The complete path specification, including server if desired.

Returns
boolean: True if the operation was successful and the drive mapping is properly created.

Example
if map('g','fs1/sys:mail') then
    okbox('Drive Map Created Successfully');

See Also
GetNextNetDrive



mapDelete : boolean
Use the mapDelete function when you need to complete remove a Netware drive mapping for the 
system table of available drives.    

No error checking or validation is performed, so your application should provide the means to close 
any open data files that may exist on the removed drive.

Parameters
cDrive : char.    The drive letter to remove.

Returns
Boolean:    True if the drive is removed successfully.

Example
if MapDelete('g') then
    OKBox('Drive G Removed') ;

See Also
Map, MapShow, GetFirstNetDrive



mapShow : TStringList
Use mapShow when you need to create a parseable listing of all available drives on the workstation.

Parameters
None.

Returns
TStringList:    A parseable listing of all available network and local drives.    The first two characters in 
each stringlist element represent the drive letter and colon.    The remainder of the data represents 
the complete path.

Example
var
    tempList : TStringList ;
begin
    templist := TStringList.Create ;
    tempList.Addstrings(mapShow) ;
end;



maxConns : TNWNumber
This function returns the maximum number of configured server connections on the workstation.    By
default, Netware allows up to 8 server connections under an IPX/ODI Driver setup.    Under VLMs, up
to 32 server connections can be configured by modifications to the NET.CFG file.    

See your network documentation for more information about your NET.CFG file.

Parameters
None

Returns
TNWNumber:    The total number of connections supported on the workstation.

Example
var
    tempList : TStringList ;
begin
    for nloop := 1 to maxConns do begin
            tempList.Add('Server Entry') ;
    end;
end;



modifyTrusteeRights : boolean
Use this function to change an object's directory trustee rights on a particular server.    You must be a 
SUPERVISOR    to modify an object's directory trustee rights.

You can add new trustee rights or modify existing rights with this function.

Parameters
nServer : TNWConnHandle      The server connection handle that owns the object in which 
directory trustee rights are to be modified.

Pass a 0 (zero) as the server handle and NWLib automatically uses the 'primary' server connection 
handle.

cUserName : String      The name of the object in which a trustee right    is added or edited.    This can 
specify any Netware object that can have directory trustee rights, such as users and groups.

cVolName : String      The name of the drive volume that contains the directory in which the trustee 
rights exist, or are to be created.    You may pass an empty string if the complete volume and path 
information is specified in the cPath parameter.

cPath : String      The complete pathname to the directory in which trustee rights are added or 
modified.    The path must exist.      If you pass an empty string in the cVolName parameter, you must 
include the volume name as part of the directory pathname.

Returns
Boolean.    True if the specified trustee right was added or modified for the particular object.    False 
usually means the object specified is not valid, or the path does not exist.

Example
var
    rightsList : TNWRightsList ;

with rightsList do begin
    supervisor := false ;
    read := true ;
    write := true ;
    create := true ;
    erase := true ;
    modify := true ;
    fileScan := true ;
    accessControl := false ;
end;

if modifyTrusteeRights(
getPrimaryServerID,
'GUEST',
'sys:',
'public',



rightList) then
    okbox('Operation Completed Successfully!') ;

See Also
deleteTrusteeRight
getEffectiveRights
getObjectDirRights
getPrimaryServerID
getServerHandle

Sub Heading
Paragraph



nCopy : boolean
nCopy is actually a high-level interface to two seperate functions.    The first of which is an ultra-high-
speed server-to-server copy function which works only on files that exist on the same file server.    
The next is for all other files, and is not quite as fast as the first, especially if the files in question 
reside over network connections vs. completely local storage.

nCopy first checks to see if the source and target files exist on the same file server,    If so, the 
function simple informs Netware the file needs to be copied, then returns the API calls returns value.  
Since the file is copied mostly into memory, and the file contents never travel down the network wire, 
the copy is usually instantaneous on average performing networks.    

nCopy automatically reverts to the standard copy routine if either of the two input files do not reside 
on the same physical file server storage.

Parameters
cSourcefile : String.    The full DOS pathname of the file you want to copy.

cTargetFile : String.    The complete DOS target path of the destination file.    The
directory must already exist.      If the file already exists, it will be overwritten without warning.

Returns
Boolean.    True if the file was copied successfully.

Example
if nCopy('g:\home\giant.xls','h:\excel\data\giant.xls') then
    OKBox('File Copied OK!') ;



ndsAbbreviateName : string
Converts a Directory Name (including all attribute type specifications) to the shortest form relative to 
the current context.

Parameters
directoryName : String

Returns
String.    The shortest form of directoryName relative to the current context.

Example
edit1.text := ndsAbbreviateName(ndsGetContextName) ;

See Also
ndsExpandName
ndsGetRootName



ndsClose : boolean
Call this function when you are ready to shut down an application which uses NDS services.    This 
call releases the memory allocated for Novell's Unicode tables by NWLib's NDSInit call.

Parameters
None.

Returns
Boolean.    True if the allocated memory is released.    False usually indicates the NDS Environment 
was not properly initialized in the first place.

Example
if (not NDSClose) then
          alertBox('Error Releasing NDS Unicode Table Allocation!') ;

See Also
NDSInit



ndsCopyContext : TNWDSContextHandle
Creates a new context for NDS client operations and initializes it to the same settings as the context 
in whose handle it is passed.

Parameters
contextHandle : TNWDSContextHandle        The source context handle to duplicate. A clone of the 
contextHandle is created that the client may access, change and call completely independent of the 
source contextHandle.

Returns
TNWContextHandle.    The cloned context handle.    0 is returned if the operation could not be 
completed successfully.

Example
var
    newContextHandle : TNWDSContextHandle ;
    newContextName    : String ;
begin
    newContextHandle := ndsCopyContext(ndsGetContextHandle) ;
    if (newContextHandle > 0) then
        begin
              newContextName := getContextName(newContextHandle) ;
              okbox('Duplicate Context Handle Created!') ;
        end;
end;

See Also
ndsGetContextHandle
ndsSetContextName



ndsExpandName : string
 
Returns the complete context name of an abbreviated directory context name, relative to the active 
context.

Parameters
directoryName : String.        The abbreviated name to expand.    

Returns
String.    The complete name of directoryName relative to the current context.

Example
edit1.text := ndsExpandName(ndsAbbreviateName(ndsGetContextName)) ;

Sub Heading
Paragraph



ndsFreeContext : boolean
Release memory allocated for context handle.    Memory is allocated for the context handle by such 
function calls as ndsInit and ndsCreateContext.    You should always ensure this allocation is freed 
before your program terminates if possible.

Parameters
contextHandle : TNWDSContextHandle        The context handle to free.    

Returns
Boolean.    True if the contextHandle allocation is released.        False usually indicates the 
contextHandle does not exist.

When a context handle is freed, the context is no longer available at the workstation.    Any attempts 
to gather information about this context will fail.

Example
if ndsFreeContext(ndsGetContextHandle) then
      close
else
      alertBox('Error Closing NDS Context Handle!') ;

See Also
ndsGetContextHandle
ndsCreateContext
ndsGetContext
ndsSetContextName



ndsGetAttrRights : TNWDSAttrRights
Returns a summary of an object's effective attribute rights with respect to a given object in the 
current context.

Parameters
sourceObject : string.      The name of the source object in which attribute rights are obtained.

targetObject:    string.      The name of the target object in which attribute rights of the sourceObject 
are compared.

VAR attrRights : TNWDSAttrRights.        The predefined record structure containing the attribute rights
sourceObject is granted in respect to targetObject.

Returns
Boolean.    True if the attribute rights are successfully retrieved.    False if the call fails or the given 
objectName(s) do not exist in the current context.

Example
var
    attrRights : TNWDSAttrRights ;
begin
      if ndsGetAttrRights(ndsWhoAmI,'bravo.admin.john',attrRights) then
          begin
                okBox('Your Attribute Rights:;' + 
                                          iif(attrRights.compare,'Compare;','') +
                                          iif(attrRights.read              ,'Read;'          ,'') +
                                          iif(attrRights.compare,'Write;'            ,'') +
                                          iif(attrRights.compare,'Self;'                ,'') +
                                          iif(attrRights.compare,'Supervisor','') ) ; 
        end;
end;

See Also
ndsGetSMSRights
ndsGetEntryRights



ndsGetBinderyContextName : string
If your environment contains workstations making calls to a Netware 4.x server in Bindery Emulation 
mode, you'll probably need this function to determine the workstation's location in the server's 
context.

Parameters
nServer:    TNWConnHandle.    The server's connection handle in which to retrieve the bindery 
context name.

Returns
String.    The resolved bindery context name.    This is the entry point into the NDS tree the 
workstation is seeing as root of an emulated bindery.

Example
edit1.text := ndsGetBinderyContextName(getPrimaryServerID) ;

See Also
ndsGetContextName
ndsSetContextName
ndsGetRootName
ndsGetContextHandle



ndsGetContextHandle : TNWDSContextHandle
This function returns the active context handle in use at the current workstation.    This handle can be
used in other NWLib functions, in in direct Netware API calls.

Parameters
None.

Returns
TNWDSContextHandle.    The current context's handle.

Example
var
    contextHandle : TNWDSContextHandle ;
begin
    contextHandle := ndsGetContextHandle ;
end;

See Also
ndsFreeContext
ndsCopyContext



ndsGetContextName : string
 
Returns the name of the current Directory Services context handle in use at the workstation.

Parameters
none.

Returns
String.    The name of the Directory Context as a string value.

Example
edit1.text := ndsGetContextName ;

See Also
ndsSetContextName
ndsGetContextHandle
ndsFreeContext



ndsGetEntryRights : boolean
Returns a summary of an object's effective entry rights to a given object in the current context.

Parameters
sourceObject : string.      The name of the source object in which Entry rights are obtained.

targetObject:    string.      The name of the target object in which Entry rights of the sourceObject are 
compared.

VAR entryRights : TNWDSEntryRights.        The predefined record structure containing the entry 
rights sourceObject is granted to targetObject.

Returns
Boolean.    True if the entry rights are successfully retrieved.    False if the call fails or the given 
objectName(s) do not exist in the current context.

Example
var
    entryRights : TNWDSEntryRights ;
begin
      if ndsGetEntryRights(ndsWhoAmI,'bravo.admin.john',entryRights) then
          begin
                okBox('Your Entry Rights:;' + 
                                          iif(entryRights.browse, 'Browse;' ,'') +
                                          iif(entryRights.add ,'Read;' ,'') +
                                          iif(entryRights.delete, 'Delete;','') +
                                          iif(entryRights.rename, 'Rename;','') +
                                          iif(entryRights.supervisor,'Supervisor','') ) ; 
        end;
end;

See Also
ndsGetAttrRights
ndsGetSMSRights



ndsGetObjID : TObjID
Returns the raw Object ID number of a user relative to the current directory context.

Parameters
nServer:    TNWConnHandle.    The server connection handle to query.

userName : String.    The complete context name of the user, or the relative name of the user in 
which to obtain the Object ID.

Returns
TObjID.    The raw Object ID of the given userName.    The return value can be converted to 
Hexidecimal to obtain the user's Hex Object ID, or passed through getObjName to retrieve the user's
current context name.

Example
var 
    rawObjID : TObjID ;
begin
    rawObjID := ndsGetObjID( getPrimaryServerID,

'bravo.admin.jim') ;
    okBox('User Name: ' + getObjName(rawObjID) + 
                        ';User Object ID: ' + intToHex(rawObjID) ) ;
end;

See Also
getObjName



ndsGetRootName : string
 
Returns the partition root name of any given object.

Parameters
objectName : string.      The name of the object to query.

Returns
String.    The resolved partition root name of the given objectName.    An empty string is returned if 
the function call is not successful, or the objectName does not exist in the current context.

Example
edit1.text := ndsGetRootName('bravo') ;

See Also
ndsExpandName



ndsGetServerDN : string
 
Returns a Netware 4.x server Distinguished Name.    

Parameters
nServer :    TNWConnHandle      The server connection handle in which to retrieve the distinguished 
name.

Returns
The file server's complete distinguished name as a string type.

Example
edit1.text := ndsGetServerDN(getPrimaryServerID) ;

See Also
ndsGetBinderyContextName
ndsGetContextName
ndsGetRootName



ndsGetSMSRights : TNWDSsmsRights
Returns a summary of an object's effective SMS rights with respect to a given object in the current 
context.

Parameters
sourceObject : string.      The name of the source object in which sms rights are obtained.

targetObject:    string.      The name of the target object in which sms rights of the sourceObject are 
compared.

VAR smsRights : TNWDSsmsRights.        The predefined record structure containing the sms rights 
sourceObject is granted in respect to targetObject.

Returns
Boolean.    True if the SMS rights are successfully retrieved.    False if the call fails or the given 
objectName(s) do not exist in the current context.

Example
var
    smsRights : TNWDSsmsRights ;
begin
      if ndsGetSMSRights(ndsWhoAmI,'bravo.admin.sys1:',smsRights) then
          begin
                okBox('Your SMS Rights:;' + 
                                          iif(smsRights.scan,            'Scan;'                ,'') +
                                          iif(smsRights.backup      ,'Backup;'        ,'') +
                                          iif(smsRights.restore        ,'Restore;'      ,'') +
                                          iif(smsRights.rename      ,'Rename'        ,'') +
                                          iif(smsRights.delete          ,'Delete;'            ,'') +
                                          iif(smsRights.admin          ,'Admin'              ,'') ) ; 
        end;
end;

See Also
ndsGetAttrRights
ndsGetEntryRights



NDSInit : boolean
Before calling any of NWLib's NDS functions,    you should first verify the workstation and server have
been properly initialized for NDS calls.

You can validate the presence of an NDS environment by making this call at the top of your program 
or unit.

Parameters
None.

Returns
Boolean.    True if the NDS environment is available.    False usually indicates the NDS environment 
is not present, or the user does not have the VLM shells loaded.

This function also initializes and allocates a memory buffer for Novell's Unicode tables.    This buffer 
must be freed on shutdown of the application with a call to NDSClose.

Example
if (not ndsInit) then
    begin

alertBox('NDS Not Initialized Properly!') ;
close;

    end;

See Also
NDSClose
NWInit 



ndsLogin : boolean
 
Logs a workstation using VLMs running in NDS Mode into a 4.x Network.

Parameters
userName : string.      The name of the user to log into the server.    
passWord:    string.      The user's password.

Returns
Boolean.    True if the user is successfully logged into the network.

Example
if (not ndsLogin('bravo.admin.jimt','myPassword')) then
      alertBox('Login Error!') ;

See Also
ndsLogout
NWLogin
NWLogout



ndsLogout : boolean
 
Logs a user out of a Netware 4.x network.

Parameters
none.

Returns
Boolean.    True if the logout is successful.

Example
if (not ndsLogout) then
    alertBox('Error Logging Out!') ;

See Also
ndsLogin
NWLogout
NWLogin



ndsPassCheck : boolean
 
Validate a user's Login Password on a Netware 4.x network.    Good for screen savers, workstation 
lockup programs, menu security, etc.

Netware always stores passwords in double-secret encrypted mode.    You cannot make any Netware
API calls that will retrieve this password in textual, unencrypted form.

Parameters
userName : String.    The name of the user to validate.
Password : String.      The user's password to validate.

Returns
Boolean.    True is the userName/Password combination is correct.

Example
if ndsPassCheck('bravo.admin.jim','superFly') then
    begin
        {do something}
    end;

See Also
nwPassCheck



ndsSetContextName : TNWDSContextHandle
Use this function to change the active context on the current workstation.    

Parameters
contextName : String.    The context name on the network in which to active as the current context.

You should free the context handle (ndsFreeContext) associated with this new context handle when 
you have finished with it.

Returns
contextHandle:    TNWDSContextHandle.      The handle to the new context.    0 is returned if the call 
is not successful.

Example

contextHandle := ndsSetContextName('office.sales.texas') ;
if (contextHandle < 1) then
    alertBox('Specified Context does Not Exist!') ;

See Also
ndsGetContextName
ndsGetContextHandle
ndsFreeContext



ndsWhoAmI    : string
Returns the caller's full directory name, relative to the context in use.

Parameters
none.

Returns
String.    The user's full directory name, relative to the active context.

Example
edit1.text := ndsWhoAmI ;

See Also
whoAmI
ndsLogin



NWDateTimeToTDateTime : TDateTime
Converts a Novell Packed Date/Time format into a Delphi TDateTime type.

Mostly used internally, but you can call this function yourself if you are making any direct Netware 
API calls that contain a packed date/time value.

Parameters
inDate: TNWDateTime

Returns
TDateTime:    A regular Delphi TDateTime type that can be used like any other TDateTime variable.

Example
edit1.text := formatDateTime('mm/dd/yy',

NWDateTimeToTDateTime(nwDateVar)) ;



nwInit : boolean
NWInit should be the first NWLib call that your programs make.    You call this function to initialize the
Netware DLL.    You get back a boolean value which indicates whether or not the user has a valid 
Netware shell loaded. 

If the user does not have a valid Netware Shell environment, you should not make any network 
environment calls, for obvious reasons.

Returns
Boolean value.    True means network initialization occurred properly, and you can make network 
function calls.      False means you should not make any network calls.

Parameters
none

Example
begin
    if not NWInit then
          begin
                  AlertBox('Netware Not Loaded!') ;
                  close
          end;
end;



NWLogin : boolean
To establish a valid connection to a file server, you need to first make a connection to it with the 
NWLogin function.    You pass the server and user name, along with a password and object type, and
Netware validates the password and logs the workstation into the specified server if all data is 
correct.    

Parameters
cServer : String.    The name of the server in which to perform the login.    This server becomes the 
default server if a successful login is made.

cUserID : String.    The UserID in which to log in.    Like TODDR or JULIE.

cPassword : String. The Password to use.    NWLib encrypts the password down the wire if encrypted
passwords are enabled.

nObjType : TObjType.    Netware allows other object types, such as Job Servers, Print Servers, etc. 
to log into the network.    This parameter allows you to specify    the object type (ie, nw_user, 
nw_group, etc.) to log into the server.    If you pass a 0 (zero) as this parameter, a user object 
(nw_user) defaults.

Returns
Boolean.    True if the login was successful.

Example
if NWLogin('fs1','ELAINER','hello',nw_user) then
    OkBox('Login OK!    Way to Go!') ;



NWLogOut : Boolean
Use NWLogOut when you want to completely sever a workstation's connection to a particular file 
server.    The workstation is completely logged out, and the server connection handle is freed, making
room for others if needed.

Use NWLogin if you want to re-attach to the file server and log in again.

Parameters
nServer: TNWConnHandle.    The server handle you want to disconnect.    No prompts or 
confirmations are displayed, so it's up to you to provide the necessary user interface/safety checks to
assure the proper closing and saving of open data files.

Returns
Boolean.    True if the logout was successful.

Example
if YesNoBox('Log Out of Server ' + GetServerName(getPrimaryServerID)) then
        NWLogout(GetPrimaryServerID) ;



nwPassCheck : boolean
nwPassCheck allows you to safely verify a user's Netware password. You simply pass a userID and 
password string, and NWLib checks it against the Netware Bindery/NDS to see if a match is made.

Netware stores it's password information for each user in an encrypted fashion.    You can never 
retrieve the actual password from the Novell operating environment, only verify a password's validity. 
So, unless you have a user's password to start with, you cannot find out the password, even if you 
are a SUPERVISOR.

A common use for this function is password-protecting menu items or creating screen blankers or 
other security devices.

Parameters
nServer:    TNWConnHandle        The server connection handle that owns the object    to be queried.     
Pass a 0 (zero) as the server handle and NWLib automatically uses the 'primary' server connection 
handle.

cUserID : string.    The UserID who's password to validate.

cPassword : string.    The password to validate.

Returns
Boolean:    If cUserID's password really is cPassword, then True is returned. 

False is returned if cCuserID is not a valid network user or the password is not correct.

· Note that Netware counts the number of attempts to validate a password, and may disable the 
login ID if too many incorrect attempts are made to try to validate a password.        If your User 
account is disabled because of this 'intruder lockout,' you'll need to use your SysCon or 
NetAdmin utility to re-activate the account, or wait until the disarm time expires.

See Also
NDSPassCheck



parseNetwarePath : boolean
This function takes just about any format of path specifier, and converts it into a standard format 
which netware uses internally.    From the referenced structure, you can obtain a lot of useful 
information, such as the server name that owns the path, the source volume ID, relative path, etc.

Parameters
nServer:    TNWConnHandle        The server connection handle that owns the object    to be queried.     
Pass a 0 (zero) as the server handle and NWLib automatically uses the 'primary' server connection 
handle.

cPath:    The fully-qualified path information, including drive letter or volume text information.

VAR pathInfo : TNWPathInfo 

Returns
Boolean.    True if the call is successful, and the given pathname actually exists on the specified 
server.    In which case, the referenced TNWPathInfo record structure is filled with relative 
information.

Example
var
    pathInfo : TNWPathInfo ;
begin
    if parseNetwarePath(0,'z:\',pathInfo) then
          okBox('z: is really: ' + pathInfo.relativePath) ;



purgeAllFiles    : boolean ;
Completely wipes out all recoverable files on a particular server without any confirmation or warning 
at all. 

Once executed by a user with Console Operator rights, all deleted files are completely wiped out by 
the server.

Parameters
nServer : TNWConnHandle.    The server connection handle in which to wipe out the deleted files.

Returns
Boolean.    True if the operation was a success.

Example
if purgeAllFiles(getPrimaryServerID) then
        okbox('Purge Completed!') ;

See Also
Salvage, getDeletedFiles, getDeletedFileInfo



querySemaphore : word
Returns the number of workstations with the specified semaphore open.    The current semaphore 
value is also returned by reference.

Parameters
nServer      :    TNWConnHandle.      The server connection that owns the semaphore.

semaHandle:    TNWSemaHandle.    The semaphore handle to query.

var semaValue:    word.    The current semaphore 'value.'    A semaphore can store any arbitrary value 
along with the station count for your own use.

Returns
word.    The active stations with a lock on this semaphore.    The semaValue parameter is updated to 
reflect the current semaphore arbitrary value.

Example
var
    semaHandle :    TNWSemaValue ;
    semaValue : word ;
begin
      semaHandle := createSemaphore(0,'NWLIB',10) ;
      if (semaHandle > 0) then
            okBox(intToStr(querySemaphore(0,semaHandle,semaValue) )    + 
                                    ' open connections to NWLib') 
    else
          alertBox('Error Opening Semaphore!') ;
end;

See Also
createSemaphore



renameObject    : Boolean
Use this function if you'd like to change the name of an existing Netware object.    The object must 
already exist, of course.

Parameters
nServer:    TNWConnHandle        The server connection handle that owns the object    to be renamed.  
Pass a 0 (zero) as the server handle and NWLib automatically uses the 'primary' server connection 
handle.

oldName:    String          The name of the existing object to rename.

newName:    String        The new name of the existing object.

objType:    TObjType        The object type, such as nw_user of nw_group.

Returns
Boolean.    True if the operation is a success.

Example
if renameObject('BILLY','SALLY',nw_user) then
      okbox('Billy's Sex Change is a Success') ;

See Also
createObject, deleteObject



salvage : boolean ;
Use Salvage when you need to recover a file that's been deleted from a Netware volume.    

Parameters
nServer : TNWConnHandle.    The server handle in which to recover the deleted file.

deletedFile : string.    The complete path specification and name of    the erased file.

outputFile: string.    The final output designation filename.    The file is written into the original file 
location.

Returns
Boolean.    True if the file is properly salvaged.

Example
if Salvage(getPrimaryServerID,'z:\public\deleted.doc','output.doc') then
    okbox('File Salvaged!') ;

See also
getDeletedFileInfo, getDeletedFiles, purgeAllFiles



SecureEquiv : boolean
Use SecureEquiv when you want to see if a user has a security level equal to or greater than another
user on the network.    A common use for this function is for SUPERVISOR security checks, ie, to 
enable certain menu items and such for those users which have SUPERVISOR equivalency.

Parameters
nServer:    TNWConnHandle        The server connection handle that owns the object    to be queried.     
Pass a 0 (zero) as the server handle and NWLib automatically uses the 'primary' server connection 
handle.

objectName : string.    The Object Name you want to test, such as 'SUPERVISOR'.

cEquiv: string.    The entity to be tested against, such as 'BOB'.

Returns
 If UserID's security level is equal to or greater than cEquiv, True is returned.    False otherwise.

Example
menuSuper.enabled := secureEquiv(WhoAmi,'SUPERVISOR') ;



sendLineMessage : boolean
Use sendLineMessage when you want to send a broadcast message to another user on the network.
The target user must be logged into the network at the time, must not have Broadcast messages 
disabled, and must not have more than two messages already waiting in the server's broadcast 
queue (note:    some third party    utilities increase this 2 message limit by buffering the server's 
broadcast messages elsewhere other than the server's internal queue).

Parameters
nServer:    TNWConnHandle        The server connection handle that owns the object    in which to send
the message      Pass a 0 (zero) as the server handle and NWLib automatically uses the 'primary' 
server connection handle.

cUserID : string.    The target user in which to send the message.    This user must be logged into the 
current server.    If the user resides on a different server, make that server the default by using the 
SetPreferredServer function before calling sendLineMessage.

cMessageText: string.      The text you want to send to the user.    Note NWLib does not automatically 
pre-pend [Sender_UserID] to the front of the string.    If you choose to leave this portion off the 
message, you in effect are sending anonymous messages.

Returns
Boolean:    True if the message was delivered to the workstation successfully.    False could mean a 
variety of things, including the user not being logged into the network, or having more than 2 
messages already waiting at the file server.

Example
if SendLineMessage('Jim','[' + WhoAmI + ']    ' + Hello There!') then
    OKBox('Message sent to Jim!') ;



serverLoginOK    : boolean
Determines whether the server is accepting logins.    If the system administrator has 'Disabled Logins'
or the server bindery is otherwise locked, this function lets you know.

Parameters
nServer:    TNWConnHandle.    The server connection handle to query.    Pass a 0 (zero) as this 
parameter to specify the current, or default file server.

Returns
boolean.    True if network objects can access the server.      False may indicate a bindery locked 
condition.    

If you suspect an invalid server connection handle, check the value of the lastError variable.    If it is 
non-zero, the call failed.

Example
checkBox1.checked := serverLoginOK(getPrimaryServerID) ;

See Also
NWLogin
NWLogout



setBannerUserName : boolean
If you need to change the UserName that appears on those print job banner pages, use this function.
This is a seperate string from the banner text.

A Banner will not print at all if the Capture environment's BannerText is empty.

Parameters
cBannerName : String.    The UserName you wish to have printed on banners.

Returns
Boolean.    Successful if the Banner UserName was changed.

Example
setBannerUserName('JIMT') ;

See Also
getBannerUserName, Capture, setCaptureFlags, getCaptureFlags



setCaptureFlags : boolean
After a Capture has been performed on the workstation, you can use the setCaptureFlags function to
change attributes about the capture environment already in place.    This change can happen right 
after a new NWLib Capture function call, or independently to leave the current Capture in place and 
just change it's attributes.

Parameters
nPort : TNWLpt.    The port number to alter.    Usually 1 to 3.

CaptureFlags : TNWCaptureFlags.    The predefined record structure containing the attributes that 
you want to change.

Returns
Boolean.    True if the Capture environment was changed to the new attributes specified in the the 
CaptureFlags record structure.

Example
var
    captureFlags : TNWCaptureFlags ;
    nLPT : TNWLpt ;
    oldqueue : string ;
begin
        nLPT := 1 ;      
        if getCaptureFlags(nLPT,captureFlags) then
              begin
                  captureFlags.formfeeds := False ;      { /nff }
                  captureFlags.banner    := '' ;                          { /nb }
                  captureFlags.tabSize := 0 ;                        { /nt    }
                  oldqueue := captureFlags.qname ;      { i.e. Save old Capture, if you need }
                  Capture('fs1','printer1',nLPT) ) then
                      begin
                                setCaptureFlags(GetPrimaryServerID,nLPT,captureFlags) ;
                                okBox('Print Redirected to FS1/Printer1') ;
                      end;
              end;
end;

See Also
getCaptureFlags, Capture, isCaptured



procedure setCastMode
This procedure attempts to change the broadcast mode at the current file server.    This affects the 
way Netware broadcast messages are handled by the network shell (NETX or other VLM).

Parameters
nMode :      specify one of the following predefined constants:
                              nw_caston :    enable all broadcasts; displayed immediately.
                              nw_castOff:    disable all broadcasts; discard them.
                              nw_castserver    :    hold messages at server.

Returns
Nothing...it's a procedure, after all! 

Example
if castoff.checked then
    setCastMode(nw_castOff) ;



Title



SetPreferredServer : boolean
Since Netware sometimes returns different information depending on which server is currently 
'default,' you can use this function to change the active server.    After this change,    Print Capture, file
server environment, bindery calls and other NWLib function calls start referring to this server 
connection.

Parameters
cServer : string.      Name of the server you want to make default.
VAR nServer : TNWConnHandle.    Passed by reference, NWLib returns back to you the server 
handle of the new default server.    You might store this variable for future needs to call the current 
server handle.

Returns
Boolean.    True if the change to the new server was successful.    False if not.    Maybe the cServer 
name is not valid?

Example
var
    templist : TStringList ;
    nloop : byte
    nConnhandle : TNWConnHandle ;
begin
    templist := TStringList.Create;
    templist.AddStrings(getConnectedServerList) ;
    for nloop := 1 to templist.Count do begin
          if setPreferredServer(templist[nloop-1],nconnHandle) then
              okBox('Connected To Server: ' + templist[nloop-1]) ;
    end;
end;



setQueueJobInfo : boolean
Changes details about a print queue job, such as the description, execution time, print status flags, 
etc.

Parameters
queueJobInfo : TNWQueueJobInfo.    A structure containing the server connection handle, print 
queue name, and queue job ID to change.    Change any other fields that you want to change about 
the print queue job.        

You must supply at least the first three queueJobInfo[] elements in order to properly call this function.

Returns
Boolean.    True if the changes to the queue job were accepted.    The new queue job values are 
returned in the passed queueJobInfo structure.

Example
var
        queueJobInfo : TNWQueueJobInfo ;
        jobList : TNWQueueJobList ;
        serverConn : TNWConnHandle ;
        queueName : string ;
begin
      serverConn := getPrimaryServerID ;
      queueName : 'laser' ;
        if getQueueJobNumbers(serverconn,queueName,jobList) and
                          (jobList[0] > 0) then
                begin
                          queueJobInfo.nServer := serverConn ;
                          queueJobInfo.cQueue := queueName ;
                          queueJobInfo.jobID          := jobList[0] ;
                          queueJobInfo.jobDescription := 'Changed Job Description' ;
                          queueJobInfo.jobFlags.user_hold := true ;
                          if setQueueJobInfo(queueJobInfo) then
                                        okBox('Job Info Changed!') ;
                end ;
end;

See Also
getQueueJobInfo
getQueueJobList
getQueueJobNumbers



setQueueJobPosition : boolean
Changes the placement of a queue job within the current print queue.    Other queue jobs are 
renumbered according to the selected position of the queue job moved.

To move a print job to the end of the queue, specify 250 as the new queue position, as Netware 
queues can only have 250 jobs in a queue at a time.

Parameters
queueJobInfo : TNWQueueJobInfo.    A structure containing at least the server connection handle 
that owns the print queue, the print queue name, and the print job ID to manipulate.

You must supply at least the first three elements of the queueJobInfo structure in order to properly 
call this function.

Returns
Boolean.    True if the call is successful, and the queue job is moved to the new postition.        False 
usually indicates on of the first three parameters of the queueJobInfo structure do not point to a valid 
queue job

You cannot move a print job currently in service.

Example
var
      queueJobInfo : TNWQueueJobInfo ;
      jobList : TNWQueueJobList ;
begin
        queueJobInfo.nServer := getPrimaryServerID ; 
        queueJobInfo.cQueue := 'laser'    ; 
        if (not getQueueJobNumbers(queueJobInfo.nServer,
                                                                                                              queueJobInfo.cQueue,
                                                                                                                jobList)) or
                (jobList[0]=0) then
                            exit ;
          queueJobInfo.jobID := jobList[0] ;
          if setQueueJobPosition(queueJobInfo,250) then
                  okbox('Queue Job Moved to End') ;
end;

See Also
getQueueJobInfo
setQueueJobInfo
getQueueJobNumbers
getQueueJobList



setServerDateTime : Boolean
Pass setServer a server connection handle and a valid TDateTime value, and you'll instantly set the 
file server's date and time.    

You must have console operator rights on the specified server in order to perform this function.

Parameters
nServer : TNWConnHandle.    The server whose time clock you wish to reset.

dt: TDateTime.    The new Date and Time.

Returns
Boolean.    True if the function was successful.    Next time you log into the file server (not attach), 
your PC Clock will be synchronized to this new time, unless you disabled that feature through a 
NET.CFG setting.

Example
var
    dt : TDateTime
begin 
      dt := strToDateTime('12/25/95 12:00:01 am') ;
      if setServerDateTime(dt) then
          OKBox('Ho Ho Ho!    Merry Christmas!') ;
end;

See Also
Paragraph



sList : TStringList
Use the sList function when you need to fill up a TStringList with the names of the servers that are 
visible at the current workstation.    You can use this TStringList as the foundation for a listbox or 
create a loop and act on each of the server names independently.

Parameters
None

Returns
TStringList:    The complete list of file servers advertising on your network.

Example
var
    templist : TStringList ;
    nloop : byte;
begin
    templist := TStringList.Create ;
    templist.AddStrings(sList) ;
    for nloop := 1 to tempList.count do begin
        okBox('Found Server: ' + templist[nloop-1]) ;
    end;
end;



TNWCaptureFlags
Copies : longint        ;  # of Copies
TabSize : longint        ; Tab Conversion (0=No Tabs)
formType : longint        ; Form Number
timeOut : longint        ; Time Out Value
description : string          ; Job Name (For Queue Display)
formName : string          ; Form Name
banner : string          ; Banner Text (Empty=/NB)
qname : string          ; RO : Queue Name
nServer : TNWConnHandle ;RO:    Server Name
autoEndCap : boolean              ; Auto-EndCap job on exit
formFeed : boolean              ; Enable FormFeeds?
JobNotify : boolean              ; Enable Job Notification?



TNWLib

Structures

NWInit
whoAmI
fullName
getObjName
getObjType
getObjID
getObjNumber
getConnectID
maxConns
getMyGroups
getDirRights    (moved to getObjectDirRights in TNWProp)

sendLineMessage
getBroadcastMode
setCastMode

getPrimaryServerID
getBinderyList
getMemberList
isMember
isinList
isLoggedIn
isConsoleOperator
getServerName
getConnectedServerList
setPreferredServer
getConnectInfo
NWPassCheck
sList
getServerDate
getServerTime
isNWManager
secureEquiv

map
mapShow
mapDelete
getMapInfo



nCopy
getFirstNetDrive
getNextNetDrive
parseNetwarePath
getPathInfo

longSwap



whoAmI : string
Just like Novell's own command line utility of the same name, WhoAmI allows you to fetch the 
current user's Login Name at the preferred server.

Parameters
nServer:    TNWConnHandle        The server connection handle that owns the object in which to query.
Pass a 0 (zero) as the server handle and NWLib automatically uses the 'primary' server connection 
handle.

Returns
String:    The name of the user logged in on the current server.

Example
begin
    footer.caption := whoAmI;
    if fileExists('m:\home\' + whoAmI(0) + '\zofo.zep') then
          alertBox('Cool.') ;
end;



NWNDS

Novell Directory Services Name and Context Management

{******** Public Record Structures ********}

type
    TNWDSAttrRights = record

compare : boolean ;
read : boolean ;
write : boolean ;
self : boolean ;
supervisor : boolean ;

end;

type
    TNWDSEntryRights = record

browse : boolean ;
add : boolean ;
delete : boolean ;
rename : boolean ;
supervisor: boolean ;

end;

type
    TNWDSSMSRights = record 

scan : boolean ;
backup : boolean ;
restore : boolean ;
rename : boolean ;
delete : boolean ;
admin : boolean ;

end;

NDSInit
NDSClose
NDSGetServerDN
NDSGetBinderyContextName
NDSGetContextHandle
NDSFreeContext
NDSGetContextName
NDSCopyContext

NDSGetRootName
NDSAbbreviateName
NDSExpandName



NDSWhoAmI
NDSGetObjID
NDSLogin
NDSLogout
NDSPassCheck
NDSGetAttrRights
NDSGetSMSRights
NDSGetEntryRights



TNWPrint
structures

Capture
EndCap
isCaptured
setCaptureFlags
getCaptureFlags
getMaxPrinters
getQueueUsers
getQueueOperators
getQueueServers
setBannerUserName
getBannerUserName

getQueueJobList
getQueueJobNumbers
getQueueJobInfo
setQueueJobInfo
deleteQueueJob
setQueueJobPosition



TNWProp

Object and Property Manipulation Functions

TNWRights:    General File and Directory Rights Structure    

type
    TNWRights    =    record

supervisor : boolean ;
read : boolean ;
open : boolean ; {Netware 2.x Only}
write : boolean ;
create : boolean ;
erase : boolean ;
modify : boolean ;
filescan : boolean ; { Search in Netware 2.x}

end;

Used in:    modifyTrusteeRights, getEffectiveRights, getObjectDirRights

createObject
renameObject
deleteObject
getObjectDirRights
getEffectiveRights
modifyTrusteeRights
deleteTrusteeRight
getObjectInfo
changeObjectSecurity
changeNWPassword

createProperty
deleteProperty
addObjectToSet
deleteObjectFromSet
writeItemProperty
changePropertySecurity
getPropertyList
getTrusteeList
addUserToGroup
deleteUserFromGroup



writeItemProperty : boolean
A Netware object, such as a user or group contain a few BF_ITEM properties.    Item properties can 
contain a single entry, such as the 'IDENTIFICATION' property, which holds the object's Full Name.

Use the writeItemProperty function to modify an existing property in a Netware object.    

Parameters
nServer:    TNWConnHandle        The server connection handle that owns the object in which the new 
property is to be modified.      Pass a 0 (zero) as the server handle and NWLib automatically uses the 
'primary' server connection handle.

objName:    String.      Specify the name of the object that owns the Item property to be edited.

objType:    TObjType.    Use one of NWLib's predefined constants, such as nw_user or nw_group.    
NWLib's include file contains a complete listing of all valid Netware object types.

propName:    String.    Pass any existing property name that exists in the scope of the specified user.   
This function can modify any property, including new ones that you may have created yourself, or 
those created by Netware itself.

value:    String.    Specifies the replacement string that is written to the specified Object's property.

Returns
Boolean.    True if the operation is successful and the object's property is modified. A return code of 
false usually indicates the server/user combination is invalid, or the object does not contain such a 
property. 

Example
if writeItemProperty(getPrimaryServerID,

'SUPERVISOR',
nw_user,
'IDENTIFICATION',
'Techno-Jock') then

        okBox('Supervisor Full Name Changed!') ;

See Also
createProperty, createObject



TNWServer

Structures

disableLogins (console operators only)
enableLogins (console operators only)
downServer (console operators only)
getServerHandle
getServerSerial
getServerHandlefromPath
NWDateTimeToTDateTime

NWLogout
NWLogin
getUserConnList

getVolumes
getVolFileList
volinfo (Netware 2.2 only)
getFileInfo

salvage
getDeletedFileList
getDeletedFileInfo
purgeAllFiles (console operators only)

getCacheInfo          (Netware 4.x only)
getFileSysStats            (Netware 2.2 only)
getDiskCacheStats        (Netware 2.2 only)
getServerStats (some items Netware 4.x only)
getUserStats        (Netware 4.x only with console operator rights)

createSemaphore
decSemaValue
freeSemaphore
incSemaValue
querySemaphore

serverLoginOK





volinfo : boolean ;
To obtain physical information about a Netware 2.2 server volume, use this function.

Parameters
nServer ; TNWConnHandle .    The Netware 2.2 server handle containing the volume in which to 
obtain physical information.

volName : string.    The physical volume name to query, such as 'SYS:' or 'VOL1:'

var volumeInfo : TNWVolumeInfo.    A referenced structure filled with all sorts of handy information.

Returns
Boolean.    True if the referenced structure is properly filled with physical volume information.

Example
var
    volumeinfo : TNWVolumeInfo ;
begin
      if volinfo(getPrimaryServerID,'SYS:',volumeInfo) then
            okBox('Total Blocks: ' + intToStr(volumeInfo.totalBlocks)) ;
end.

See Also
getServerStats



NWTools

String Manipulation

allTrim(ctext : string) : string ;
Removes all leading and trailing white space from a pascal-style string.

LTrim(ctext ; string) : string ;
Removes leading white space from a pascal-style string.

RTrim(ctext : string) : string ;
Removes trailing white space from a pascal-style string.

leftString(ctext : string) : string ;
Returns the left-most portion of a pascal-style string.

rightString(ctext : string; nLength: integer) : string ;
Returns the right-most portion of a pascal-style string .

padC(ctext : string ; nLength : integer ; cChar : char) : string ;
Add white space to both sides of a pascal-style string until it is x number of bytes in length.

Longer strings are truncated to the maximum length specified in nLength.

padL(ctext : string ; nLength : integer ; cChar : char) : string ;
Add white space to the left side of a pascal-style string until it is x number of bytes in length.

Longer strings are truncated to the maximum length specified in nLength.

padR(ctext : string ; nLength : integer ; cChar : char) : string ;
Add white space to the right side of a pascal-string until it is x number of bytes in length.

Longer strings are truncated to the maximum length specified    in nLength.

Rat(ctoken : char ;    ctext : string) : integer ;
Return the right-most ordinal position of a particular character within a pascal-style string.

strExtract(ctext : string ; cToken : char ; nPos : integer) : string ;
Extracts a delimited substring of a string.        For example, you could use this function to extract out 



the 4th element of a comma-delimted string.      You specify the sournce string, the characters which 
make up the delimiters, and finally, which sub-element you want extracted.

strTran(ctext, cFor, cWith : string) : string ;
Converts a all instances of a particular character in a string to any other character.

iif(Expression : boolean; cReturn1, cReturn2 : string) : string ;
Returns one of two strings, depending on boolean value.    Very handy for button captions and 
dynamic string handling functions.    For instance, you can build an expression that says "Yes" if the 
value is True, or "No" if the value is false.

Dialogs

procedure alertBox(cMessage : string) ;
Diaplay a standard modal Windows "Stopsign" dialog box.    

procedure okBox(cMessage : string) ;
Displays a standard modal Windows "Information" dialog box.

yesNoBox(cMessage : string) : integer ;
Displays a standard modal Windows "Question" dialog box.

noYesBox(cMessage : string) : integer ;
Same as the YesNoBox, but with 'No' highlighted by default.

YNCBox(cMessage : string) : boolean ;
Displays a standard modal Windows "Yes/No/Cancel" dialog box.

Calculators

charCount(ctext : string; ctoken : char) : integer ;
Counts the occurences of a character within a string.

minLong(nval1, nval2 : Longint) : Longint ;
Returns the lower of two values.

maxLong(nval1, nval2 : Longint) : Longint ;



Returns the higher of two values.

delim2strList(ctext : string) : TStringList ;
Converts a comma-delimited string list into a TStringList object, filled with the values wthin the string. 
Great for converting data records into listboxes and such.

strEmpty(ctext : string) : boolean ;
True if the specified pascal-style's string length is less than 1.

aSub(atemp : array of char ; nstart, nend : word) : string ;
Returns a substring of a zero-based character array.    You specify the starting and ending positions, 
and a pascal-style string is returned.    Very handy for scanning large memos/pChars and displaying 
the contents in a button or other screen object.

stringListPos(strList : TStringList ; ctext : string ; var index : word) : boolean ;
Returns the ordinal position of a substring with a TStringList object.    The value returned is the row in
which the substring exists.

space(nlength : word) : string ;
Returns a string containing x number of white spaces.

between(nVal, nMin, nMax : longint) : longint ;
Tests to see if a value is between two other values.

File Functions

setPath(cpath : string) : string ;
Returns a nicely formatted path specification.    It ensures the path contains a trailing backslash, the 
drive letter and colon are present within the string and it satisfies standard DOS naming conventions.

canOpen(cfile : string) : boolean ;
Tests to see if any particular file can be opened for read by your workstation.    It's a good idea to do 
this before trying to open any file that may result in an undesired error message or situation.

funique(cpath : string) : string ;
Creates a guaranteed unique file name in the path you specify, and returns to you the name of the 
file that was created.

sizeofFile(cfile : string) : longint ;
Gives you the size of the specified file.



Date/Time Functions

timeTextInc(ctime : string; nway : integer) : string ;
Rounds time string up or down to the nearest 15 minutes.    For instance, when incrementing a time 
string, 11:28 becomes 11:30 and 11:30 becomes 11:45.

dateTextInc(ctime : string; nway : integer) : string ;
Moves date string up or down by one day, honoring all standard leap year and last-day-of-month 
conventions.

formTime(cdate : TDateTime) : string ;
Returns a nicely formatted time string based on a TDateTime variable.

formDate(cdate : TDateTime) : string ;
Returns a nicely formatted date string based on a TDateTime variable.

lastDay(cDate : TDateTime) : byte ;
Returns the last day of the month of the given date.    Takes into consideration all leap year activity, 
etc.

year(ctime : TDateTime) : byte ;
Extracts the year portion from a TDateTime variable.

month(cdate : TDateTime) : byte ;
Returns the month number from a date variable.

day(cdate : TDateTime) : byte ;
Returns the day portion of a TDateTime variable.

second(ctime : TDateTime) : byte ;
Returns the second portion of a TDateTime variable.

minute(cdate : TDateTime) : byte ;
Returns the minute portion of a TDateTime variable.

hour(ctime : TDateTime) : byte ;
Returns the second portion of a TDateTime variable.





Bindery Object Types
NWLib defines many Netware object types, including nw_user, nw_group, nw_printq, nw_server, etc.



createObject
<createObject>



createProperty
<createProperty>



TNWConnectInfo
<structures>



TNWConnStats
<structures>



TNWDeletedFileInfo
<structures>



TNWDiskCacheInfo
<structures>



TNWFileInfo
<structures>



TNWFileSysInfo
<structures>



TNWLib
<TNWLib>



TNWMemCacheInfo
<structures>



TNWNDS
<TNWNDS>



TNWPrint
<TNWPrint>



TNWProp
<TNWProp>



TNWRights
<structures>



TNWServer
<TNWServer>



TNWServerInfo
<structures>



TNWTools
<TNWTools>



TNWVolInfo
<structures>






